

Data Quality Monitoring with Machine Learning in High Energy Physics

*Adrian Alan Pol^{†‡} Cecile Germain[†] Gianluca Cerminara[‡] Maurizio Pierini[‡]

†University of Paris-Sud

‡CERN CMS

Compact Muon Solenoid (CMS) Experiment at LHC, CERN

Data Quality Monitoring (DQM) system

- a critical asset to guarantee a high-quality data for physics analyses
 - ► live during data taking (online DQM)
 - during offline data processing (offline DQM)
- online DQM assess data goodness and identifies emerging problems in the detector
- data with poor quality is flagged by eyeballing dashboards and comparing a set of histograms to a reference good sample

Identifying problems in real-time: summary of the current strategy

- identify problems in the detector & trigger system, e.g. read-out electronics errors
- fraction of the events with a rate of ~100Hz
- monitor 15 subsystems, each with unique parameters
- currently implemented static thresholds perform data reduction tasks
- based on results of those threshold tests and set of instructions, operator spots problems by visual inspection

DQM system used in CMS

Problems with current strategy

- delay: human intervention and thresholds require collecting sufficient statistics;
- volume budget: amount of quantities a human can process in a finite time period;
- static thresholds don't scale: assumptions we included all failure scenarios;
- human driven decision process: alarms based on shifter judgment;
- changing running conditions: reference samples change over time;
- manpower: the effort to train a shifter and maintain instructions

Can we solve or reduce some/all of the above problems?

Let's have a self-sustaining and autonomous, reliable and fast data quality monitoring framework at CMS

Muon detector occupancy data reduction

- the number of muons crossing a certain region (single electronic read-out channel) of the muon chambers
- expected behavior: occupancy of the hits with small variance between neighbouring read-out channels

Muon detector occupancy data reduction cont.

- noisy or under-performing area is reported as a problem
- ▶ each layer (row) is a separate sample to detect problems with a thinner granularity $X = \begin{pmatrix} x_{m,1} & x_{m,2} & \cdots & x_{m,n} \end{pmatrix}$, m layer, n cell number

Results

- supervised learning: binary classification
- ► labels, by experts: 4300/476, ~.1 positives
- 80:20 train/test split
- stratified folds for cross-validation
- trained SVM, Isolation Forest, and CNN with 1D convolutions

Layer (type)	Output	Shape	Param #
conv1d_7 (Conv1D)	(None,	47, 5)	30
max_pooling1d_7 (MaxPooling1	(None,	10, 5)	0
flatten_7 (Flatten)	(None,	50)	0
dense_13 (Dense)	(None,	128)	6528
dense_14 (Dense)	(None,	2)	258
Total params: 6,816 Trainable params: 6,816 Non-trainable params: 0			

None

Results cont.

► CNN outperforms other approaches, 0.95 hit rate for 0.01 fall-out rate.

Bottom line

- the current paradigm of the quality assessment in the CMS collaboration is based on the scrutiny of a large number of histograms by detector experts comparing them with a reference
- the project aims at applying machine learning techniques to the automation of this process allowing the check of large volumes of data in real-time and improving the ability to detect unexpected failures
- the muon detector exercise is rather about learning if/how to plug machine learning technology in the CMS DQM, than solving real problems
- other projects happening within CERN OpenLab:
 - certification of data for physics analysis with Yandex
 - ► online DQM with IBM

