
Marie Lanfermann, Andrea Coccaro, Tobias Golling

NN Optimisation for Flavour Tagging in ATLAS

Hammers and Nails - Machine Learning & HEP 
20th July 2017



Flavour Tagging Optimisation 
Marie Lanfermann

Hammers and Nails - Machine Learning & HEP 
8th June 2017 2

Higher Level Tagger 
What do we want? 

• b-tagging 
• c-tagging 
• Robust tagger (data/MC comparison) 
• Optimisation and Generalisation 

• Good performance over full kinematics region 
• Good for various physics searches 

• As little total work as possible

Kinematics

Introduction to flavour tagging in ATLAS

Details  

next Wednesday  

by Tobias
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• Pre-processing: 

• Reweight in 2D kinematics to b-jet distribution <—treating flavours on equal footing 

• Default values:  

• No values far from non-default values but rather set to mean of non-default values 

• Introduce binary default-check variables (to propagate information on the values being defaults) 

• Training (Hybrid ttbar/Z’ sample):  

• Interesting phase space up to O(1TeV) 

• Available statistics: 5.1 M training jets, 1.3 M validation jets 

• Weighs are used in the back propagation update (training & validation set) 

• Evaluation (separate pure samples of ttbar or Z’): 

• Available statistics: ttbar: 6.5 M jets; Z’: 4.3 M
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Protocol
Pre-processing Training incl. loss monitoring Evaluation

Hybrid ttbar/Z’ sample

Pure samples of ttbar or Z’
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DL1 - General Overview

c-tagging:

Bias 
Node

6-10 hidden layers 
Mixtures of  

MaxoutDense and Dense layers 
ReLU activation function

3 output nodes 
softmax activation function

higher level variables b-tagging:

Building the  
final DL1 discriminant: 

Reducing output  
dimensionality

—> Increased Flexibility: 
+ Background weighing tuneable after training 
+ Same training usable for b- and c-tagging NN config file size ~1MB

Performance evaluation  
on pure ttbar and Z’ samples

Training using  
ttbar-Z’ Hybrid sample

Input Layer Hidden  
Layer 1

Hidden  
Layer 2

Output LayerBias 
Node

Bias 
Node
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Grid Search
• Varied:  

• Number of hidden layers, layer type 
sequencing, number of nodes, learning rate 

—> Approximately 100k trainable parameters 
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• Keras sequential model 

• 3 output nodes 

• Theano backend  

• Adam optimiser  

• Minimise categorical cross-entropy loss 

• General settings: 

• ReLU activation function (softmax for 
output layer) 

• Mixture of Maxout and Dense layers 

• BatchNormalisation 

• Dropout (training) for robustness 

• 1st layer: 10% of nodes masked 

• Other hidden layers: 20% masked 

• 100 training epochs
Information accessible  

after construction Kears model via: 
model.summary()

MO: Maxout layer
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1. Sanity Checks: 
1. #(training samples) > #(free parameters of the model) 
2. Loss development on training and validation set is monitored 

2. Performance evaluated on test sets 
3. Extend training for best performing configuration  

• Performance after different number of epochs evaluated on test 
sets (using Keras ModelCheckpoints)

6

Optimisation Procedure
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Iso-efficiency curve = Scan over full range of          : 
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b-tagging
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Tuneable after training: 
Background fraction of 
the final DL1 discriminant 
can be adapted for 
physics performance 
interests by moving along 
the lines 

Discussion on performance improvements  

next Wednesday by Tobias
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Modelling check
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• Good separation 
• Simulation describes the data within 20% with some localised differences for low and high values 
• To be checked with more data

Generalisation
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Conclusions
• Novel highly flexible tagger ready to be used on 2017 data 

• Only one training 
• Tuneable after training 

• Calibration analysis starting 
• The theorem “There’s no free lunch” holds 

The more inputs are taken into account, the more the 
NN approach gains in performance w.r.t. a BDT 
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BACKUP
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The DL1 chain
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Initial Calo-Jet Cuts
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Akt4EMTopo jets
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Input modelling check
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