Course Identification

Introduction to quantum optics
20191132

Lecturers and Teaching Assistants

Prof. Barak Dayan, Dr. Serge Rosenblum
Ziv Aqua

Course Schedule and Location

2019
Second Semester
Thursday, 14:15 - 17:00, Weissman, Auditorium
18/04/2019
24/07/2019

Field of Study, Course Type and Credit Points

Physical Sciences: Lecture; Elective; 3.00 points
Chemical Sciences: Lecture; Elective; 3.00 points

Comments

N/A

Prerequisites

  • Quantum mechanics of B.Sc. - a must
  • Quantum mechanics I of M.Sc. - preferable

Restrictions

30

Language of Instruction

English

Attendance and participation

Expected and Recommended

Grade Type

Numerical (out of 100)

Grade Breakdown (in %)

60%
40%

Evaluation Type

Final assignment

Scheduled date 1

09/08/2019
N/A
-
N/A

Estimated Weekly Independent Workload (in hours)

3

Syllabus

Abstract

This course aims to provide the fundamental tools and concepts of quantum optics – the field that deals with the quantum description of light. Starting from the concept of the photon, the quantization of the electromagnetic fields, nonclassical states of light, quantum entanglement and finally the description of quantium light-matter interactions.

Glossary

  1. Brief overview of prerequisite subjects: Fourier, optical modes
  2. From Maxwell equations to the uantization of the electromagnetic field
  3. Fock states, coherent states, squeezed states
  4. Distribution functions in quantum optics, homodyne
  5. Coherence and 2nd order correlation functions, Hanbury-Brown and Twiss
  6. Quantum entanglement and Bell inequalities
  7. Parametric down-conversion and entangled photons
  8. Brief overview of applications of quantum entanglement: Quantum Key Distribution and Quantum Computing.
  9. Light-Matter interactions: Jaynes-Cummings model, Mollow spectrum, Dressed States
  10. Cavity-QED in the Strong Coupling and Fast Cavity Regimes, photon-atom gates
  11. Brief overview of open quantum systems and cascaded systems formalism

Learning Outcomes

Upon successful completion of this course students should be able to:

  1. Use the fundamental concepts and analytic description of quantized light - from classical light (coherent states) to non classical light such as single photons, entangled photons and squeezed vacuum. Understand and be able to use the concepts of coherence, 2nd order coherence, and multi-photon interference.
  2. Understand and be able to quantify entangled states of light and matter, and be familiar the most common non-classicality tests such as anti-bunching, Bell inequality, etc.
  3. Demonstrate familiarity with the fundamental concepts and analytic description of light-matter interactions.

Reading List

  • Introductory Quantum Optics by Gerry and Knight (Cambridge)
  • The Quantum Theory of Light (Loudon)

Website

N/A