Course Identification

Mathematics module: Introduction to mathematics education

Lecturers and Teaching Assistants

Prof. Boris Koichu, Dr. Jason Cooper, Prof. Ruhama Even

Course Schedule and Location

First Semester
Thursday, 11:15 - 13:00, FGS, Rm 5

Field of Study, Course Type and Credit Points

Science Teaching: Lecture; Obligatory; Regular; 2.00 points
Science Teaching -Teaching Certificate: Lecture; Obligatory; Regular; 0.00 points
Science Teaching (non thesis MSc Track): Lecture; Obligatory; Regular; 2.00 points


Rothschild-Weizmann Program- for 1st year students





Language of Instruction


Attendance and participation


Grade Type

Numerical (out of 100)

Grade Breakdown (in %)


Evaluation Type

Final assignment

Scheduled date 1


Estimated Weekly Independent Workload (in hours)



The goal of this course is to get acquainted with, and better understand, the field of mathematics education and its development in the last 60 years. The course will present an overview of trends and main characteristics of each decade, related to the following topics (not necessarily in this order):

  • Mathematics curricula.
  • Different perspectives on learning mathematics.
  • Different approaches to teaching mathematics and to classroom culture.
  • National and International tests and their implications.

Learning Outcomes

Upon successful completion of the course- the students should be able to:

  1. Describe main events in the last 60 years of the field of mathematics education.
  2. Identify different forces that influence changes in the field of mathematics education.
  3. Illustrate the complexity of making changes in school mathematics.
  4. Compare opportunities for meaningful learning of mathematics provided by different curriculum materials.
  5. Explain what teachers can learn from research in mathematics education.

Reading List

ברונר, ג'. ס. (1965). תהליך החינוך, הוצאת יחדיו, תל אביב עמ' 26-38

Brownell, W.A. (1947). The place of meaning in the teaching of arithmetic,
Elementary School Journal, 47, 256-65. Reprinted in T. P. Carpenter, J. A.
Dossey, J. L. Koehler (Eds.), Classics in mathematics education research
)pp. 9-14), 2004.

ארלוונגר, ס. ה. (1973). המושגים של בני על כללים ותשובות במתמטיקה (תכנית
IPI). פורסם במקור: Erlwanger, S. H. (1973). Benny's conception of rules and
answers in IPI mathematics. The Journal of Children's Mathematical Behavior,
1(2), pp. 2-26.

פויה, ג. (1956). כיצד פותרין? הוצאת "אוצר המורה" (עמ' 4-32).

Schoenfeld, A. H. (1985). Mathematical problem solving (pp. 11-45).

Clement, J. (1982). Algebra word problem solutions: thought processes underlying a common misconception, Journal for Research in Mathematics Education 13, 16?30.

סקמפ, ר. (2002). הבנה רלציונית והבנה אינסטרומנטלית, , עיונים בחינוך מתמטי, בעריכת גילי שמאע, האוניברסיטה הפתוחה, עמ. 73-84.

ארנה יאקל ופול קוב (2002), נורמות סוציו-מתמטיות, הצגת טיעונים ועצמאות במתמטיקה, עיונים בחינוך מתמטי, בעריכת גילי שמאע, אוניברסיטה הפתוחה, עמ. 207-229.

Lampert, M.(1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching, American Educational Research Journal, Vol. 27, No. 1, 29?63.