Course Identification

Introduction to lasers
20221171

Lecturers and Teaching Assistants

Dr. Riccardo Piccoli, Dr. Barry Bruner
N/A

Course Schedule and Location

2022
First Semester
Sunday, 14:15 - 16:00, Weissman, Seminar Rm A
24/10/2021
30/01/2022

Field of Study, Course Type and Credit Points

Physical Sciences: Lecture; Elective; Regular; 2.00 points
Chemical Sciences: Lecture; Elective; Regular; 2.00 points

Comments

N/A

Prerequisites

No

Restrictions

30

Language of Instruction

English

Attendance and participation

Expected and Recommended

Grade Type

Numerical (out of 100)

Grade Breakdown (in %)

40%
60%
Instead of a final exam, the students will give seminar presentations

Evaluation Type

No final exam or assignment

Scheduled date 1

N/A
N/A
-
N/A

Estimated Weekly Independent Workload (in hours)

3

Syllabus


1.    Introduction and principle of lasers 
a.    The laser concept, history, and properties of the light
b.    Spontaneous and stimulated emission
c.    Optical gain and absorption, atomic line shapes (homogenous/inhomogeneous broadening)
d.    Rate equations, population inversion, and small-signal gain in two-, three-, four-level systems

 

2.    Laser materials 
a.    Host materials and active ions properties (absorption and emission bands, line broadening characteristics)
b.    Overview of laser types and their applications (e.g. solid-state, gas, semiconductor)

 

3.    Continuous-wave laser oscillator 
a.    Longitudinal modes and stability criterion
b.    Gain saturation and circulating power
c.    Threshold condition, output power (quasi-three level and four-level system), and optimum output coupling
d.    Frequency tuning 

 

4.    Optical resonators
a.    Gaussian beams, higher-order modes, and beam quality (M2 parameter)
b.    Beam propagation (ABCD matrix) and resonator stability, unstable resonators
c.    Thermal effects

 

5.    Pulsed lasers
a.    Q-switching
b.    Mode-locking
c.    Devices for pulsed operation 

 

6.    Amplifiers
a.    Single-and multi-pass amplification
b.    Regenerative amplifiers
c.    Chirped-pulse amplification

 

7.    Ultrafast optics and technologies
a.    Fundamentals of pulse propagation in optical fibers
b.    Pulse shaping and compression techniques
c.    Pulse characterization techniques 
d.    Spatial mode shaping
e.    Laser-induced damage, laser machining

 

Seminar presentations: 20 min/student

 

Learning Outcomes

Upon successful completion of this course, students should be able to:

1.  Demonstrate knowledge of fundamental concepts in laser physics and engineering.

2.  Explain principles of laser operation, resonators, amplifiers.

3.  Demonstrate an understanding of ultrafast sources and ultrafast technologies.  

Reading List

1.    O. Svelto: “Principles of Lasers”
2.    W. Koechner: “Solid State Laser Engineering”
3.    A. M. Weiner: “Ultrafast Optics”
4.    A. E. Siegman: “Lasers”
 

Website

N/A