Elliptic dynamical quantum group $E_{\tau,h}(\mathfrak{gl}_2)$ and elliptic equivariant cohomology of cotangent bundles of Grassmannians.

Alexander Varchenko

The torus T equivariant elliptic cohomology defines a functor $Ell_T: \{T - \operatorname{spaces} X\} \to \{\operatorname{schemes}\}$. For example, for the cotangent bundle of a Grassmannian the scheme $Ell_T(T^*\operatorname{Gr}(k,n))$ is some explicitly given sub-scheme of $S^kE \times S^{n-k}E \times E^n \times E^2$ with coordinates $t_1,\ldots,t_k,\,s_1,\ldots,s_{n-k},z_1,\ldots,z_n,y,\lambda$, where t_i,s_j correspond to the Chern roots of the two standard vector bundles over the Grassmannian, z_1,\ldots,z_n,y correspond to the torus parameters, λ is the dynamical parameter also called the Kähler parameter, and E is an elliptic curve.

I will define a class of line bundles on the scheme $\bigcup_{k=0}^n Ell_T(T^*\operatorname{Gr}(k,n))$ such that the operator algebra of the elliptic dynamical quantum group $E_{\tau,y}(\mathfrak{gl}_2)$ will act on sections of those line bundles (a generator of the operator algebra will send a section of such a line bundle to a section of possibly another line bundle). That construction is an analog of the Yangian $Y(\mathfrak{gl}_2)$ action on the direct sum $\bigoplus_{k=0}^n H_T^*(T^*\operatorname{Gr}(k,n))$ of equivariant cohomology.

This is a joint work with G.Felder and R.Rimanyi.