Pavao Mardesic, Iterated integrals and Melnikov functions

We present the results of a recent joint work with Dmitry Novikov, Laura Ortiz-Bobadilla and Jessie Pontigo-Herrera.

We consider small polynomial deformations of integrable systems of the form $dF=0, F\in\mathbb{C}[x,y]$ and the first nonzero term M_μ of the displacement function $\Delta(t,\epsilon)=\sum_{i=\mu}M_i(t)\epsilon^i$ along a cycle $\gamma(t)\in F^{-1}(t)$. It is known that M_μ is an iterated integral of length at most μ . The bound μ depends on the deformation of dF

We give a universal bound for the length of the iterated integral expressing the first nonzero term M_{μ} depending only on the geometry of the unperturbed system dF=0. Our result generalizes the result of Gavrilov and Iliev providing a sufficient condition for M_{μ} to be given by an abelian integral i.e. by an iterated integral of length 1. We conjecture that our bound is optimal.