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Classic vs. State of the Art Deep Learning
Classic

Multilayer Perceptron (MLP)

Architectural choices:
depth
layer widths
activation types

State of the Art

Convolutional Networks (ConvNets)

Architectural choices:
depth
layer widths
activation types
pooling types
convolution/pooling windows
convolution/pooling strides
dilation factors
connectivity
and more...

Can the architectural choices of state of
the art ConvNets be theoretically analyzed?
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Expressiveness

Expressiveness

Fundamental theoretical questions:

What kind of functions can di�erent network architectures represent?

Why are these functions suitable for real-world tasks?

What is the representational benefit of depth?

Can other architecture features deliver representational benefits?

What does it mean to have a "representational benefit"?

Amnon Shashua (Hebrew U.) Expressiveness of Convolutional Networks 6 / 57



Expressiveness

E�ciency
Expressive e�ciency compares network architectures in terms of their
ability to compactly represent functions

Let:
HA – space of func compactly representable by network arch A
HB – -”- network arch B

A is e�cient w.r.t. B if HB is a strict subset of HA

A is completely e�cient w.r.t. B if HB has zero “volume” inside HA
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Expressiveness

Inductive Bias
Networks of reasonable size can only realize a fraction of all possible func
E�ciency does not explain why this fraction is e�ective

HA HB

all func
Why are these 

functions interesting?

To explain the e�ectiveness, one must consider the inductive bias:
Not all functions are equally useful for a given task
Network only needs to represent useful functions
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Expressiveness of Convolutional Networks – Questions
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Expressiveness of Convolutional Networks – Questions

Questions about E�ciency and Inductive Bias

Depth E�ciency: deep ConvNets are (exponentially) E�cient
compared to shallow networks

Pooling scheme a�ects inductive bias in an E�cient manner

ConvNets with Overlapping convolution are E�cient compared to
non-overlapping ones.

Modern connectivity schemes (split/merge/skip) are E�cient
compared to standard feed-forward (LeNet, AlexNet,..).

Layer width distribution a�ects inductive bias in an E�cient manner.
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Expressiveness of Convolutional Networks – Questions

E�ciency of Depth
Longstanding conjecture, proven for MLP:

deep networks are e�cient w.r.t. shallow ones

Q: Can this be proven for ConvNets?
Q: Is their e�ciency of depth complete?
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Expressiveness of Convolutional Networks – Questions

Inductive Bias of Convolution/Pooling Geometry
ConvNets typically employ square conv/pool windows

Recently, dilated windows have also become popular

Q: Conv/Pooling Scheme ¡ Set of functions modeled per network size ¡
Suitability per task
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Expressiveness of Convolutional Networks – Questions

E�ciency of Overlapping Operations
Modern ConvNets employ both overlapping and non-overlapping
conv/pool operations

Q: ConvNets with Overlapping conv are expressively E�cient w.r.t. those
without (stride = kernel size)?
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Expressiveness of Convolutional Networks – Questions

E�ciency of Connectivity Schemes
Nearly all state of the art ConvNets employ elaborate connectivity
schemes: layers in parallel, split/merge/skip connections..

DenseNet

Inception (GoogLeNet) ResNet

Q: Connectivity schemes are E�cient compared to standard feed-forward
(LeNet, Alexnet,..)?
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Expressiveness of Convolutional Networks – Questions

Inductive Bias of Layer Widths
No clear principle for setting widths (# of channels) of ConvNet layers

Q: What is the inductive bias of one layer’s width vs. another’s?

Q: Can the widths be tailored for a given task?
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Convolutional Arithmetic Circuits
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Convolutional Arithmetic Circuits

Convolutional Arithmetic Circuits: Baseline Architecture

� � � �,
d irep i d fT x

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix

M 0r 0r 1Lr � 1Lr � Y

� � � �0,
0 , , ,:conv j rep jJJ  a

� � � �0 0
'

, ',
j window j

pool j conv jJ J
�

 � � � � �1 1
' covers space

',L L
j

pool conv jJ J� � �
� � � �,

1, :L y
Lout y pool � a

X

Baseline ConvAC architecture:

Linear activation (‡(z) = z), product pooling (P{cj} = r
j cj)

1 ◊ 1 convolution windows (non-overlapping convolution: stride =
kernel size).

Intimate relationship to math machinery: tensor analysis, measure theory,
functional analysis and graph theory.
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Convolutional Arithmetic Circuits

Coe�cient Tensor

� � � �,
d irep i d fT x

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix

M 0r 0r 1Lr � 1Lr � Y

� � � �0,
0 , , ,:conv j rep jJJ  a

� � � �0 0
'

, ',
j window j

pool j conv jJ J
�

 � � � � �1 1
' covers space

',L L
j

pool conv jJ J� � �
� � � �,

1, :L y
Lout y pool � a

X

Function realized by output y :

hy (x1, . . . , xN) =
Mÿ

d1...dN=1
Ay

d1,...,dN

NŸ

i=1
f◊di

(xi)

x1. . .xN – input patches

f◊1 . . .f◊M – representation layer functions

Ay – coe�cient tensor (MN entries, polynomials in weights al ,j,“)

Amnon Shashua (Hebrew U.) Expressiveness of Convolutional Networks 18 / 57



Convolutional Arithmetic Circuits

Shallow Convolutional Arithmetic Circuit
Ωæ CP (CANDECOMP/PARAFAC) Decomposition
Shallow network (single hidden layer, global pooling):

� � � �,
d irep i d fT x

input representation 1x1 conv

global 
pooling

dense 
(output)

hidden layer

ix

M 0r 0r Y

� � � �0, ,, , ,:jconv j rep jJJ  a
� � � �

covers space

,
j

pool conv jJ J �
� �

� �1,1, , :y

out y

pool

 

a

X

Coe�cient tensor Ay given by classic CP decomposition:

Ay =
r0ÿ

“=1
a1,1,y

“ · a0,1,“ ¢ a0,2,“ ¢ · · · ¢ a0,N,“

¸ ˚˙ ˝
rank-1 tensor

(rank(Ay )Ær0)
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Convolutional Arithmetic Circuits

Deep Convolutional Arithmetic Circuit
Ωæ Hierarchical Tucker Decomposition
Deep network (L = log2 N hidden layers, size-2 pooling windows):

� � � �,
d irep i d fT x

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix

M 0r 0r 1Lr � 1Lr � Y

� � � �0,
0 , , ,:conv j rep jJJ  a

� � � �0 0
'

, ',
j window j

pool j conv jJ J
�

 � � � � �1 1
' covers space

',L L
j

pool conv jJ J� � �
� � � �,

1, :L y
Lout y pool � a

X

Coe�cient tensor Ay given by Hierarchical Tucker decomposition:
„1,j,“ =

ÿr0

–=1
a1,j,“

– · a0,2j≠1,– ¢ a0,2j,–

· · ·
„l,j,“ =

ÿrl≠1

–=1
al,j,“

– · „l≠1,2j≠1,– ¢ „l≠1,2j,–

· · ·
Ay =

ÿrL≠1

–=1
aL,1,y

– · „L≠1,1,– ¢ „L≠1,2,–
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Convolutional Arithmetic Circuits

Universality
Fact:
CP decomposition can realize any tensor Ay given MN terms
Implies:
Shallow network can realize any function given MN hidden channels

Fact:
Hierarchical Tucker decomposition is a superset of CP decomposition if
each level has matching number of terms
Implies:
Deep network can realize any function given MN channels in each of its
hidden layers

Convolutional arithmetic circuits are universal
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E�ciency of Depth
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E�ciency of Depth Cohen+Sharir+Shashua@COLT’16, Cohen+Shashua@ICML’16

Tensor Matricization
Let A be a tensor of order (dim) N

Let (I, J) be a partition of [N], i.e. I ·fiJ = [N] := {1, . . . , N}

JAKI,J – matricization of A w.r.t. (I, J):
Arrangement of A as matrix
Rows correspond to modes (axes) indexed by I
Cols -”- J
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JAKI,J – matricization of A w.r.t. (I, J):
Arrangement of A as matrix
Rows correspond to modes (axes) indexed by I
Cols -”- J

A111 A121

A221A211

mode 1

mode 2
mode 3

A111

A112

A113

A211

A212

A213

A121

A122

A123

A221

A222

A223

modes
1 & 3

mode 2

matricization w.r.t.
I={1,3}  J={2}

Amnon Shashua (Hebrew U.) Expressiveness of Convolutional Networks 23 / 57



E�ciency of Depth Cohen+Sharir+Shashua@COLT’16, Cohen+Shashua@ICML’16

Exponential & Complete E�ciency of Depth
Claim
Tensors generated by CP decomposition w/r0 terms, when matricized
under any partition (I, J), have rank r0 or less

Theorem
Consider the partition Iodd = {1, 3, . . . , N ≠ 1}, Jeven = {2, 4, . . . , N}.
Besides a set of measure zero, all param settings of HT decomposition give
tensors that when matricized w.r.t. (Iodd , Jeven), have exponential ranks.

Since # of terms in CP decomposition corresponds to # of hidden
channels in shallow ConvAC:
Corollary
Almost all func realizable by deep ConvAC cannot be replicated by shallow
ConvAC with less than exponentially many hidden channels

W/ConvACs e�ciency of depth is exponential and complete!
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E�ciency of Depth Cohen+Sharir+Shashua@COLT’16, Cohen+Shashua@ICML’16

Depth E�ciency Theorem – Proof Sketch

JAK – arrangement of tensor A as matrix (matricization)

Relation between tensor and Kronecker products: JA ¢ BK = JAK § JBK

§ – Kronecker product for matrices. Holds: rank(A§B) = rank(A)·rank(B)

Implies: A =
qZ

z=1 ⁄zv(z)
1 ¢ · · · ¢ v(z)

2L =∆ rankJAKÆZ

By induction over l = 1. . .L, almost everywhere w.r.t. {al,j,“}l,j,“ :

’j œ [N/2l ], “ œ [rl ] : rankJ„l,j,“KØ (min{r0, M})2l/2

Base: “SVD has maximal rank almost everywhere”

Step: rankJA ¢ BK = rank(JAK § JBK) = rankJAK·rankJBK, and
“linear combination preserves rank almost everywhere”
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E�ciency of Depth Cohen+Sharir+Shashua@COLT’16, Cohen+Shashua@ICML’16

A Note about Measure Zero

Depth E�ciency occurs with probability 1, i..e, besides a set of measure
zero, all functions that can be implemented by a deep network of polynomial
size, require exponential size in order to be realized (or even approximated)
by a shallow network.

The set is a zero set of a certain polynomial (based on determinants).

The zero set of a polynomial is closed, i.e., cannot approximate anything
that is not included in the set.

In other words, the closure of the set is also of measure zero.

For example, the set of Rational numbers is of measure zero, but the closure
of the set is not of measure zero. It actually fills the entire space.

Therefore, the set of functions that do not satisfy depth e�ciency should be
viewed as a low-dimensional manifold rather than a scattered set in space.
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E�ciency of Depth Cohen+Sharir+Shashua@COLT’16, Cohen+Shashua@ICML’16

From Convolutional Arithmetic Circuits
to Convolutional Rectifier Networks

� � � �,
d irep i d fT x

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix

M 0r 0r 1Lr � 1Lr � Y

� � � �� �0, ,
0 , , ,:jconv j rep jJJ V a

� � � �^ `0 0 '
, ',

j window j
pool j P conv jJ J

�
 

� � � �^ `1 1 ' covers space
',L L j

pool P conv jJ J� � 

� � � �,1,
1, :L y

Lout y pool � a

X

Transform ConvACs into convolutional rectifier networks (R-ConvNets):

linear activation ≠æ ReLU activation: ‡(z) = max{z , 0}

product pooling ≠æ max/average pooling: P{cj} = max{cj}/mean{cj}
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E�ciency of Depth Cohen+Sharir+Shashua@COLT’16, Cohen+Shashua@ICML’16

Generalized Tensor Decompositions

ConvACs correspond to tensor decompositions based on tensor product ¢:

(A ¢ B)d1,...,dP+Q
= Ad1,...,dP · BdP+1,...,dP+Q

For an operator g : R ◊ R æ R, the generalized tensor product ¢g :

(A ¢g B)d1,...,dP+Q
:= g(Ad1,...,dP , BdP+1,...,dP+Q )

(same as ¢ but with g(·) instead of multiplication)

Generalized tensor decompositions are obtained by replacing ¢ with ¢g
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Convolutional Rectifier Networks
Ωæ Generalized Tensor Decompositions

Define the activation-pooling operator:

fl‡/P(a, b) := P{‡(a), ‡(b)}

ReLU activation: ‡(z) = [z]+ := max{z , 0}
max/average pooling: P{cj} = max{cj}/mean{cj}

Corresponding activation-pooling operators associative and commutative:
flReLU/max (a, b) := max{[a]+, [b]+} = max{a, b, 0}
flReLU/sum(a, b) := [a]+ + [b]+ 1

1
Sum and average pooling are equivalent in terms of expressiveness
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Exponential But Incomplete E�ciency of Depth
By analyzing matricization ranks of tensors realized by generalized CP and
HT decompositions w/g(·) © fl‡/P(·), we show:

Claim
There exist func realizable by deep R-ConvNet requiring shallow
R-ConvNet to be exponentially large

On the other hand:
Claim
A non-negligible (positive measure) set of the func realizable by deep R-
ConvNet can be replicated by shallow R-ConvNet w/few hidden channels

W/R-ConvNets e�ciency of depth is exponential but incomplete!
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Inductive Bias of Pooling Geometry Cohen+Shashua@ICLR’17

Separation Rank – A Measure of Input Correlations
ConvNets realize func over many local structures:

f (x1, x2, . . . , xN)

xi – image patches (2D network) / sequence samples (1D network)

Important feature of f (·) – correlations it models between the xi ’s

Separation rank:
Formal measure of these correlations

Sep rank of f (·) w.r.t. input partition (I, J) measures dist from separability
(sep rank ¬ =∆ more correlation between (xi)iœI and (xj)jœJ)
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Inductive Bias of Pooling Geometry Cohen+Shashua@ICLR’17

Deep Networks Favor Some Correlations Over Others
Claim
W/ConvAC sep rank w.r.t (I, J) is equal to rank of JAy KI,J – matricized
w.r.t. (I, J)

Theorem
Maximal rank of tensor generated by HT decomposition, when matricized
w.r.t. (I, J), is:

Exponential for “interleaved” partitions
Polynomial for “coarse” partitions

Corollary
Deep ConvAC can realize exponential sep ranks (correlations) for favored
partitions, polynomial for others
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Inductive Bias of Pooling Geometry Cohen+Shashua@ICLR’17

Pooling Geometry Controls the Preference
contiguous pooling local correlations

alternative pooling alternative correlations

Pooling geometry of deep ConvAC determines which partitions
are favored – controls the correlation profile (inductive bias)!
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Overlapping Operations
Baseline ConvAC arch has non-overlapping conv and pool windows:

� � � �,
d irep i d fT x

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix

M 0r 0r 1Lr � 1Lr � Y

� � � �0,
0 , , ,:conv j rep jJJ  a

� � � �0 0
'

, ',
j window j

pool j conv jJ J
�

 � � � � �1 1
' covers space

',L L
j

pool conv jJ J� � �
� � � �,

1, :L y
Lout y pool � a

X

Replace those by (possibly) overlapping generalized convolution:
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E�ciency of Overlapping Operations Sharir+Shashua@arXiv’17

Exponential E�ciency
Theorem
Various ConvACs w/overlapping GC layers realize func requiring ConvAC
w/no overlaps to be exponentially large

Examples
Network starts with large receptive field:

Arbitrary	Layers

stride 1x1

GCrepresenta*oninput	X

M M

GC

N

N K

OutputGC

>
N

2

>
N

2

Typical scheme of alternating B◊B “conv” and 2◊2 “pool”:
Block	0

r0

k: BxB
s: 1x1

BxB	GCrepresenta-oninput	X

M r0

2x2	GC

N

N

Block	L-1

BxB	GC 2x2	GC dense	
(output)

rL-1 rL-1 K
k: 2x2
s: 2x2

W/ConvACs overlaps lead to exponential e�ciency!
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E�ciency of Interconnectivity Cohen+Tamari+Shashua@arXiv’17

Dilated Convolutional Networks
Study e�ciency of interconnectivity w/dilated convolutional networks:

size-2 conv:
dilation-1

size-2 conv:
dilation-2

size-2 conv:
dilation-2L-1

Time
t-2L+1 t+1

L-1 
hidden 
layers

N:=2L time points

input

output

0r�

1r�

2r�

1Lr ��

Lr�

tt-1t-2t-3t-2L+2t-2L

� � � �1 1, ,I 1, ,II[ ] , [ 1] , , [ ]h t g t tJ J
J  �a x a x

� � � �� �1 1,y,I 1 , ,II[ ] , [ 2 ] , , [ ]L LL L L y
yo t g t t� �� �a h a h� � � � � �� �2 1 12, ,I 2, ,II[ ] , [ 2] , , [ ]h t g t tJ J

J  �a h a h

1D ConvNets (sequence data)
Dilated (gapped) conv windows
No pooling

Underlie Google’s WaveNet & ByteNet – state of the art for audio & text!
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E�ciency of Interconnectivity Cohen+Tamari+Shashua@arXiv’17

Mixing Tensor Decompositions ≠æ Interconnectivity
With dilated ConvNets, mode (axes) tree underlying corresponding tensor
decomposition determines dilation scheme

dilation-1

dilation-2

dilation-4

dilation-8

dilation-1

dilation-2

dilation-4

dilation-8

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,2} {3,4} {5,6} {15,16}{7,8} {9,10} {11,12} {13,14}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,5,6,7,8} {9,10,11,12,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,3} {2,4} {5,7} {14,16}{6,8} {9,11} {10,12} {13,15}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,9,10,11,12} {5,6,7,8,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

Mixed tensor decomposition blending di�erent mode (axes) trees
corresponds to interconnected networks with di�erent dilations
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E�ciency of Interconnectivity

Theorem
Mixed tensor decomposition generates tensors that can only be realized by
individual decompositions if these grow quadratically

Corollary
Interconnected dilated ConvNets realize func that cannot be realized by
individual networks unless these are quadratically larger

W/dilated ConvNets interconnectivity brings e�ciency!
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Inductive Bias of Layer Widths Levine+Yakira+Cohen+Shashua@arXiv’17

Convolutional Arithmetic Circuits Ωæ Contraction Graphs
Computation of ConvAC can be cast as a contraction graph G , where:

Edge weights hold layer widths (# of channels)
Degree-1 nodes correspond to input patches

� � � �,
d irep i d fT x

input representation 1x1 conv
pooling

1x1 conv
pooling

dense 
(output)

hidden layer 0 hidden layer L-1
(L=log2N)

ix

M 0r 0r 1Lr � 1Lr � Y

� � � �0, ,
0 , , ,:jconv j rep jJJ  a

� � � �
^ `

0 0
' 2 1,2

, ',
j j j

pool j conv jJ J
� �

 �
� � � �

^ `
1 1

' 1,2

',L L
j

pool conv jJ J� �
�

 �
� � � �,1,

1, :L y
Lout y pool � a

X
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Inductive Bias of Layer Widths Levine+Yakira+Cohen+Shashua@arXiv’17

Correlations Ωæ Min-Cut over Layer Widths
Theorem
For input partition (I, J), the rank of Ay matricized w.r.t. (I, J) is
upper-bounded by the min-cut in G separating the degree-1 nodes of I
from those of J.

Corollary
To model interactions between input regions represented by a specific
bi-partition, it is required to set layer widths such that the min-cut is of
high value. A low value represents "bottlenecks" in expressivity.
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Inductive Bias of Layer Widths Levine+Yakira+Cohen+Shashua@arXiv’17

The Quantum Many-Body Wave Function

A state of a system (interchangeably its wave function) is denoted by:
|ÂÍ œ H

H - the relevant Hilbert Space
|ÂÍ - vector in the Hilbert Space (‘ket’ notation)

For a single particle with a WF in an M dimensional Hilbert space H1:

|ÂÍ =
ÿM

d=1
vd¸˚˙˝

coe�cients
vector

|ÂdÍ

The quantum many-body WF: (|ÂÍ œ H = ¢N
j=1Hj )

|ÂÍ =
ÿM

d1...dN=1
Ad1...dN¸ ˚˙ ˝

coe�cients
tensor

|Âd1Í ¢ · · · ¢ |ÂdN Í
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Inductive Bias of Layer Widths Levine+Yakira+Cohen+Shashua@arXiv’17

A Tailored Product State

Consider a single tensor product of local states |„jÍ œ Hj :

|Â psÍ = |„1Í ¢ · · · ¢ |„NÍ

By expanding each local state in the respective basis,

|„jÍ = qM
dj =1 v (j)

dj

---Âdj

f
, the product state assumes the form:

|Â psÍ =
ÿM

d1...dN=1
A ps

d1...dN
|Âd1Í ¢ · · · ¢ |ÂdN Í

A ps
d1...dN

= rN
j=1 v (j)

dj
is a rank-1 tensor

We compose each local state |„jÍ s.t. its projection on the local basis
vector equals v (j)

d = ÈÂd |„jÍ = f◊d (xj)
≠æ A ps

d1...dN
= rN

j=1 f◊dj
(xj)
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|„jÍ = qM
dj =1 v (j)

dj

---Âdj

f
, the product state assumes the form:

|Â psÍ =
ÿM

d1...dN=1
A ps

d1...dN
|Âd1Í ¢ · · · ¢ |ÂdN Í

A ps
d1...dN

= rN
j=1 v (j)

dj
is a rank-1 tensor

We compose each local state |„jÍ s.t. its projection on the local basis
vector equals v (j)

d = ÈÂd |„jÍ = f◊d (xj)
≠æ A ps

d1...dN
= rN

j=1 f◊dj
(xj)
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Equivalence to a ConvAC

Many-body WF:
|ÂÍ =

qM
d1...dN =1 Ad1...dN |Âd1Í ¢ · · · ¢ |ÂdN Í

Constructed product state:
|Â psÍ =

qM
d1...dN =1

rN
j=1 f◊dj

(xj) |Âd1Í ¢ · · · ¢ |ÂdN Í

≠æ ÈÂ ps|ÂÍ =
ÿM

d1...dN=1
Ad1...dN

ŸN
j=1

f◊dj
(xj) = hy (x1, . . . , xN)

Exactly reproducing the form of the
function realized by a ConvAC!

conv weights tensor Ωæ coe�cients tensor
rep. functions on the inputs Ωæ constructed product state
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Quantum Entanglement

Lend means of quantifying physical correlations:

“Quantum Entanglement”

Many-body WF:
|ÂÍ = qdim(HI)

–=1
qdim(HJ )

—=1 (JAKI,J)–,—

---ÂI
–

f
¢

---ÂJ
—

f

JAKI,J - matricization of A according to (I, J)

Change of basis (SVD) ≠æ |ÂÍ = qr
–=1 ⁄–

---„I
–

f
¢

---„J
–

f

⁄– - singular values of JAKI,J
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Measures of Entanglement

Using the singular values of JAKI,J , we can define several
Measures of Entanglement between I and J .

Examples:

Entanglement Entropy: the entropy of singular values
≠ q

– |⁄–|2 ln |⁄–|2

Geometric Measure: the L2 distance of |ÂÍ from the set of separable states
min|Âsp(I,J)Í | +

Âsp(I,J)|Â, |2 (shown to be related to separation rank)

Schmidt Number: the number of non-zero singular values
rank(JAKI,J)

All measures of entanglement:
minimal for a separable state
increase as the dependance between I and J becomes more complicated
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Measures of Entanglement - Convolutional Network

Can now use entanglement measures to describe the correlations
supported by a ConvAC:

Left-RightInterleaved

I -
J -

The network should support high entanglement measures for the partitions
which correspond to input correlations.
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Tensor Networks

Physicists’ approach for e�cient representation of many-body WFs:

Tensor Networks (TNs)

The basic building blocks of a TN are tensors – nodes in the network:
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Convolutional Arithmetic Circuits Ωæ Tensor Networks
Computation of ConvAC can be cast as a Tensor Network:

Edge weights hold layer widths (# of channels)

Degree-1 nodes correspond to input patches
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Correlations Ωæ Min-Cut over Layer Widths
Theorem
For input partition (I, J), the rank of Ay matricized w.r.t. (I, J) is
upper-bounded by the min-cut in G separating the degree-1 nodes of I
from those of J.

Corollary
To model interactions between input regions represented by a specific
bi-partition, it is required to set layer widths such that the min-cut is of
high value. A low value represents "bottlenecks" in expressivity.
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Implications of the Quantum-min-cut on Layer Width

Left-RightInterleaved

I -
J -

W left-right
C = min(rL≠1, rL≠2, ..., r2(L≠2≠l)

l , ..., rN/4
0 , MN/2), (1)

whereas the minimal weight of a cut w.r.t. the interleaved partition is
guaranteed to be exponential in N and obeys:

W interleaved
C = min(rN/4

0 , MN/2). (2)
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Conclusion
Expressiveness – the driving force behind deep networks

Formal concepts for treating expressiveness:
E�ciency – network arch realizes func requiring alternative arch to be
much larger
Inductive bias – prioritization of some func over others given prior
knowledge on task at hand

We analyzed e�ciency and inductive bias of ConvNet arch features:
depth
pooling geometry
overlapping operations
interconnectivity
layer widths

Fundamental tool underlying all of our analyses:
ConvNets Ωæ hierarchical tensor decompositions
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Thank You
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