BSM in direct, indirect and tabletop experiments
Weizmann Institute of Science
Nov. 14th 2017

Probing BSM physics
with Isotope shifts

CEDRIC DELAUNAY

_ CNRS/LAPTH
CD In progress
CB PRD (2017) FRANCE
CD

hep-ph/1704.05068 CIrs
CD PRD 96 (2017) 093001 |



Why BSM at low energies?

O Agnostic: why not?
O SM hierarchy problems:

Strong CP — light axion particle: ™, ~ LY

e

actively searched through %QFMVFMV

Higgs mass: H,QHTH with /,L2 ~ A2 at quantum level

which (used to?) motivate BsM at A ~ TeV.
Yet there is a (first?) counter-example: relaxion

0 New physics could show up at any scale!

time to join efforts at high and low energy frontiers



Original motive: Higgs

O Higgs boson was discovered. Yet little is known about
its couplings to fermions; SM predicts yr = mf/v ;

O High-energy colliders tell us
about heavy fermions: t,b,1,u (Cc?)

a Lighter u,d,s,e fermions are

5 ¢+ ATLAS+CMS
very challenging! : SM Higge boson
— M, €] fit
Yu,d,s < Yb  Perez+ PRD (2016) _ e

Ye ¥ S’y Altmannshofer+ JHEP (2015) . 10 107
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O Maybe atomic probes
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Precision spectroscopy

O Impressive precision measurements: relative error ~ 1016

eg. Ytterbium ion v ‘ |
Godun+ PRL (2014) 638nm
Huntermann+ PRL (2014)

Doppler

vps = 642121496 772645.36(25) Hz [ty

transitions

X 467 nm
F=1 ..
clock transition

(shift from Earth’s gravity pull —(0.046 Hz)

O Improvement expected with sharper standard of time:

E3 is stable at ~ 10-18 level Huntermann+ PRL (2016)



Towards BSM probes

0O In principle sensitive to BSM effects as small as QED/101°

O However probing BSM further requires either:

O Precise QED calculation - only available for atoms/ions
with 1,2 (maybe 3) electrons: H, He...

a0 Combining measurements and reduce sensitivity to
uncertain quantities from theory: isotope shifts, King linearity



BSM atomic potential

0 Consider a new boson ¢ with P-conserving
couplings to electron and nucleons:

: : mediator mass
mediator spin

o || s+1 e—mqyr‘
Vo(r) = S —yeya—

electronic nuclear coupling

coupling YA = Zyp, + (A = Z)yn



Isotope shift

O QED effects cancel between isotopes A, A’ up to:

l/quq/ = -lijilL44L%1’ —+'_Z:%65<7p22>_/1f4’

(/

mass shift (MS) field shift (FS)
hap = (mzl — mzfl)
O For odd A, there are also nuclear spin effects
O BSM effects mildly suppressed by (A-A")/A~0.1:

(=1 yeyn

aANP = T

I/,LAAIr BSM i Opr(A o A,)XZ

a K,F,X are electronic constant, independent of A at LO



Isotope shifts In Helium

O Helium 3,4 IS theory calculations (for point nuclei) are
known better than experimental error. pachucki+ PRA (2017)

2 Nuclear radii are 25-25 **He (e-scat)

- 25-2S **He (projection)

known from scattering: | 252 ¥He (e-sca

- 28-28/28-2P 34He
25-3P “%He
28-2P 87Li* (e-scat)

6(7’2)3’4 —— 1067(65) _ 25-2P 115N 5% (e-scat)

O Combining 2 transitions
to eliminate §(r?) helps

0 Expected improvement ,
by a factor ~100 with elum{_like) atome
MHe measurements e

Antognini+ Can. J. Phys. (2011)
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Isotope shifts in HD

O Despite proton radius puzzle, electronic and muonic
values of §{r?)gp are consistent.

O From muonic Lamb shifts; 15-25 (e-scat)
15-28 (muon LS)
28-12D (e-scat)

5<7'2>MHD = 3.8112(34) VD

Pohl+ Nature (2010), Antognini+ Science (2013)
Pohl+ Science (2016)

O Theory error dominates,
limited by m_/mg, nuc.pol.

Parthey+ PRL (2010)

isotope shift bounds
hydrogen/deuterium

a HD sensitivity comparable
to Helium




Heavy atoms?

O In atoms with many electrons e-e correlation effects are
not predictable from theory to sufficient accuracy
— direct TH/EXP comparison not possible...

O Is there any observable sensitive to BSM and limited only
by experimental uncertainty?
— King linearity

King J. Opt. Soc. Am. (1963)

O Basic idea = combine IS measurements in 2 transitions with
many (at least 4) isotopes



King linearity

a In the limit that elqctronic and nuclear parameters are
factorized as vA4 = K;uaa + Fi6(r?) 44 thereis a
linear relation between IS in 2 transitions.

/ /
0 Defining « modified IS » as myfA = ;L;Llél, I/ZAA )

one finds:

/ /
mqu — F21 ml/flA 5 K21

slope = F, / F offset = Ko — Fo1 K4



Establishing King linearity
from data

O Need 3 points on King plot — 2 transitions, 4 (even) isotopes

O Invariant measure of non-linearties
Is the triangle area:

a If NL 5 oni, then the
King plot is linear




BSM effects break linearity

O In the presence of a BSM force:

vAA = Kot oo (A — A') X

(/

0 Combining 2 transitions to eliminate M;Llél,é(er)AA, yields:

/ /
W — L e DO

0 Non-linearites from BSM unless: A0
; Xo — Fo1 X4
a X917 — 0, le. for short-range forces

QO hgpa X mz/fA’ or constant of AA’



Bounding BSM coupling

O Manipulating vectors:

—

NLnp = 22 (1 x h) - (Xymvs — Xomuy)

AN \
0 So for a given (linear) data-set muv1, mi5 we can bound

—

= (mu{)(mu%)&
NP = (1Xh)'(X1ml/2—X2mV1)

the only theoretical
inputs (depend on My )
calculated using many-
body perturbation theory



King linearity in data

O Calcium+ A=40,42,44.48

precision ~ 100kHz Gebert+ PRL (2015)
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Bounds and projections

O Ca+ bound weaker than constraints from other sources:

O neutron scattering,
O electron g-2,
O star cooling

L e

O Projected sensitivity of
clock transitions in several
elements: eqg. Sr, Srt, Yb*
with Hz accuracy could
explore new territory

O Need linearity to hold upto
~10-9

(g-2)e + neutron scattering

Ca* 0.1 MHz

Globular cluster

1000 10* 10° 10°
mg [eV]

107




One King to rule them all
(preliminary)

O Higher order nuclear effects also induce non-linearities:

I/AA, — K@'MAA’ i F@;(5<7“2>AA' B Z;L:_lz G@'jO‘AA/ R OéNP(A . A,)Xz

1

O One can either calculate them (again hard...) or use more
measurements to remove more « spurions »

O For n-2 spurions, need n transitions with n+1 isotope pairs.

O w/out BSM, the n IS vectors are on a plane in n+1
dimensions — King planarity

O w/ BSM IS vectors form a volume in n+1 dimensions

a For planar data,
EAl'“An—I—lmylAl - -MVUn A,

_EA]."'A?I—I—I eil...irn X?:]_ hAl '--myin’An_l/(n_l)!

aNp <



Conclusion, Outlook

O New physics can be anywhere. Need to measure
whatever is possible..

O Isotope shifts and King linearity i1s an effective
probe only limited by experimental errors!

O So far focused on spin-independent forces, are
there similar observables sensitive to spin-
dependend forces?






Electron-electron
INnteractions with Helium 4

— 25-25 “He
— 2P-3D *He
= 28-3D *He
— 25-2°P*He
— 25-2'P*He
15-285 ortho-Ps
= a, (scalar)
ae (vector)

electron-electron
interaction bounds




Hylleraas wavefunctions
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Sensitivity estimates

» Assume linearity is established within a precision A

» Then, factorization holds within uncertainties:

» And a best-case estimate of the resulting bound is:

7 5
anp < VAP AS X e
NP = xo=p ey ey (A—A’')min
suppression factor calculated
for short-range forces  from MBPT alignment with MS

Berengut+ PRA (2006)
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