SN la asymmetry and the gamma-ray escape time

Naveh Levanon & Noam Soker Technion, Israel

Characterizing the late-time bolometric light curve

arXiv:astro-ph/9907015v1 1 Jul 1999

- Total energy set by ⁵⁶Ni mass
- Light curve decline set by gamma-ray escape time t₀
- t₀ set by the mean gamma-ray optical depth, weighted by the ⁵⁶Ni distribution
- Late bolometric light curve defined in full by ρ , $X_{Ni} \rightarrow t_0$

RADIOACTIVE DECAY ENERGY DEPOSITION IN SUPERNOVAL
AND THE EXPONENTIAL/QUASI-EXPONENTIAL BEHAVIOR
OF LATE-TIME SUPERNOVA LIGHT CURVES

DAVID J. JEFFERY ^{1 2}

Department of Physics, University of Nevada, Las Vegas Las Vegas, Nevada 89154-4002

 $^{^1\,}$ Department of Physics, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154-4002, email: jeffery@physics.unlv.edu

² Present address: Middle Tennessee State University, Department of Physics & Astronomy, Wiser-Patten Science Hall. 1301 East Main Street. Murfreesboro. Tennessee 37132

What can be learned from t_0 ?

- Strizinger+06, Scalzo+14: construct quasi-bolometric light curves, assume an ejecta model and get the total ejecta mass $M_{\rm ej}$. A significant fraction of SNe are sub- $M_{\rm ch}$.
- Wygoda+17: compare models to observed t_0 range to constrain the models. M_{ch} models have too large t_0 .
- Does the picture change when allowing an asymmetric ⁵⁶Ni distribution?

Effect of asymmetry on to

- Assuming $L_{bol}(t) = Q_{dep}(t)$, the luminosity is not affected by asymmetry at late times
- But the gamma-ray deposition is affected through t_0
- We want to quantify how much asymmetry is allowed given the observed to values

Toy asymmetric model

Spherical density profile

$$\rho \propto e^{-v/v_{\rm e}}$$

- IGE zone offset from the center
 - $v_{\rm IGE}$ radius of IGE zone
 - v_{offset} offset of IGE zone
 - Constant ⁵⁶Ni fraction
- Limit the zone at 10,000 km/s

Results: sub-M_{ch} models

• *M*=1 M_☉, *E*=1e51 erg

Results: sub-M_{ch} models

• *M*=1 M_☉, *E*=1e51 erg

Results: Mch models

• $M=1.4 \text{ M}_{\odot}$, E=1.5e51 erg

Results: Mch models

• $M=1.4 \text{ M}_{\odot}$, E=1.5e51 erg

Current conclusions (work in progress)

- Asymmetry not likely to mitigate the large t₀ issue for M_{ch} models
- Try more suitable density profile
- An illustration of the *t*₀ constraint