SN la asymmetry and the gamma-ray escape time Naveh Levanon & Noam Soker Technion, Israel # Characterizing the late-time bolometric light curve arXiv:astro-ph/9907015v1 1 Jul 1999 - Total energy set by ⁵⁶Ni mass - Light curve decline set by gamma-ray escape time t₀ - t₀ set by the mean gamma-ray optical depth, weighted by the ⁵⁶Ni distribution - Late bolometric light curve defined in full by ρ , $X_{Ni} \rightarrow t_0$ RADIOACTIVE DECAY ENERGY DEPOSITION IN SUPERNOVAL AND THE EXPONENTIAL/QUASI-EXPONENTIAL BEHAVIOR OF LATE-TIME SUPERNOVA LIGHT CURVES DAVID J. JEFFERY ^{1 2} Department of Physics, University of Nevada, Las Vegas Las Vegas, Nevada 89154-4002 $^{^1\,}$ Department of Physics, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154-4002, email: jeffery@physics.unlv.edu ² Present address: Middle Tennessee State University, Department of Physics & Astronomy, Wiser-Patten Science Hall. 1301 East Main Street. Murfreesboro. Tennessee 37132 ### What can be learned from t_0 ? - Strizinger+06, Scalzo+14: construct quasi-bolometric light curves, assume an ejecta model and get the total ejecta mass $M_{\rm ej}$. A significant fraction of SNe are sub- $M_{\rm ch}$. - Wygoda+17: compare models to observed t_0 range to constrain the models. M_{ch} models have too large t_0 . - Does the picture change when allowing an asymmetric ⁵⁶Ni distribution? ### Effect of asymmetry on to - Assuming $L_{bol}(t) = Q_{dep}(t)$, the luminosity is not affected by asymmetry at late times - But the gamma-ray deposition is affected through t_0 - We want to quantify how much asymmetry is allowed given the observed to values ### Toy asymmetric model Spherical density profile $$\rho \propto e^{-v/v_{\rm e}}$$ - IGE zone offset from the center - $v_{\rm IGE}$ radius of IGE zone - v_{offset} offset of IGE zone - Constant ⁵⁶Ni fraction - Limit the zone at 10,000 km/s #### Results: sub-M_{ch} models • *M*=1 M_☉, *E*=1e51 erg #### Results: sub-M_{ch} models • *M*=1 M_☉, *E*=1e51 erg #### Results: Mch models • $M=1.4 \text{ M}_{\odot}$, E=1.5e51 erg #### Results: Mch models • $M=1.4 \text{ M}_{\odot}$, E=1.5e51 erg # Current conclusions (work in progress) - Asymmetry not likely to mitigate the large t₀ issue for M_{ch} models - Try more suitable density profile - An illustration of the *t*₀ constraint