

Current Heating in Quasi-ballistic Channels: Thermoelectrics and Hydrodynamic Flow

Laurens W. Molenkamp

Physikalisches Institut, EP3 Universität Würzburg

- I electric current density
- J particle current density
- J_Q heat flux, heat current density
- µ chemical potential
- T temperature
- V voltage, electrostatic potential difference

$$\begin{pmatrix} I/\\ -e\\ J_{Q} \end{pmatrix} = \begin{pmatrix} J\\ J_{Q} \end{pmatrix} = \begin{pmatrix} -\frac{L_{11}}{T} & -\frac{L_{12}}{T^{2}} \\ -\frac{L_{21}}{T} & -\frac{L_{22}}{T^{2}} \end{pmatrix} \begin{pmatrix} \nabla \mu - e \nabla V \\ \nabla T \end{pmatrix} \begin{pmatrix} L_{11} & = \frac{\sigma T}{e^{2}} \\ L_{12} & = L_{21} \end{pmatrix}$$

$$L_{12} = L_{21}$$

$$L_{12} = -\frac{ST^{-2}\sigma}{T} = -\frac{\Pi T \sigma}{T}$$

From: R.D. Barnard Thermoelectricity in Metals and Alloys (1972)

$$L_{12} = - \frac{1}{e} - \frac{1}{e}$$
$$L_{22} = T^{2} \left(\kappa + T \sigma S^{2} \right)$$

"fluxes"

$$\begin{pmatrix} I \\ Q \end{pmatrix} = \begin{pmatrix} G & L \\ M & K \end{pmatrix} \begin{pmatrix} \Delta \mu / e \\ \Delta T \end{pmatrix}$$
 "forces"

Onsager-relation: M = -LT

$$\begin{pmatrix} -\Delta V \\ Q \end{pmatrix} = \begin{pmatrix} R & S \\ \Pi & -\kappa \end{pmatrix} \begin{pmatrix} I \\ \Delta T \end{pmatrix}$$

Diffusion Thermopower

$$S \equiv \left(\frac{\Delta \mu / e}{\Delta T}\right)_{I=0} = -\frac{L}{G}$$

$$\Pi \equiv \left(\frac{Q}{I}\right)_{\Delta T=0} = \frac{M}{G} = ST$$
$$\kappa \equiv -\left(\frac{Q}{\Delta T}\right)_{I=0} = -K\left(1 + \frac{S^2 GT}{K}\right)$$

Landauer-Büttiker-Formalism:

$$G = -\frac{2e^2}{h} \int_0^\infty dE \frac{\partial f}{\partial E} t(E)$$

$$L = -\frac{2e^2}{h} \frac{k_B}{e} \int_0^\infty dE \frac{\partial f}{\partial E} t(E) \frac{\left(E - E_F\right)}{k_B T}$$

 $\frac{\left(E-E_F\right)}{k_BT}\left(\frac{\partial f}{\partial E}\right)$

odd function in *E* \rightarrow *L* large for *t*(*E*) asymmetric around *E*_F

$$\frac{K}{T} = \frac{2e^2}{h} \left(\frac{k_B}{e}\right)^2 \int_0^\infty dE \frac{\partial f}{\partial E} t(E) \left[\frac{\left(E - E_F\right)}{k_B T}\right]^2$$

$$S \equiv \left(\frac{\Delta \mu / e}{\Delta T}\right)_{I=0} = -\frac{L}{G}$$

• Kelvin-Onsager relation (1931)

$$S = -\frac{L}{G}\Big|_{I=0} = \frac{\Pi}{T} = -\frac{\left\langle E \right\rangle}{eT}$$

 $(\Delta Q = T\Delta S)$ thermal energy to transfer one electron from a hot to a cold reservoir

• Heike's formula

$$S = -\frac{1}{e}\Delta \mathbf{S} = -\frac{1}{e}k_B \left(\ln g_f - \ln g_i \right)$$

Thermopower (S)

(spin) entropy contribution

• Mott relation

$$S = -\frac{\pi^2}{3} \frac{k_B}{q} \frac{k_B T}{G} \frac{dG}{dE}\Big|_{E_F}$$
 linear response

Measuring Thermopower

$$S = -\lim_{\Delta T \to 0} \left. \frac{\Delta V_{th}}{\Delta T} \right|_{I=0}$$

$$V_{th} = V_1 - V_2 = (S_{dot} - S_{qpc})(T_e - T_L)$$

$$V_{th} = V_1 - V_2 = (S_{dot} - S_{qpc})(T_e - T_L)$$

- energy dissipation at the channel entrance
- only hot electron gas within channel (1 ps $\approx \tau_{ee} \ll \tau_{eph} \approx 0.2 \text{ ns}$)
- energy relaxation in the reservoir
- diffusion thermopower

∆T = 10 mK, ∆x = 500 nm → 20 K/mm

• QD and QPC create thermovoltages which can be measured as voltage difference between V₁ and V₂

$$V_1$$
- V_2 = (S_{QD} - S_{QPC}) ΔT = S_{QD} ΔT

 $S_{\ensuremath{\text{QPC}}}$ can be adjusted to zero

• ac-excitation and detection: $P_{heat} \sim [I \sin(\omega t)]^2$ $\sim \sin(2\omega t) \qquad (\omega/2\pi = 13 \text{ Hz})$

VOLUME 65, NUMBER 8

PHYSICAL REVIEW LETTERS

20 AUGUST 1990

Quantum Oscillations in the Transverse Voltage of a Channel in the Nonlinear Transport Regime

L. W. Molenkamp, H. van Houten, C. W. J. Beenakker, and R. Eppenga Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

Each channel in the point contact acts as a potential barrier, hence the thermopower shows a series of peaks

L.W. Molenkamp et al., Phys. Rev. Lett. 65, 1052 (1990).

- Voltage Probes have to be at same temperature and of the same material
- QPC can be used as a reference since TP of QPC is known (can be adjusted to zero)

Reference QPC

• G of QPC is quantized – and therefore, so is S. This can be used as a method of temperature calibration

L.W. Molenkamp et al., Phys. Rev. Lett. 65, 1052 (1990).
L.W. Molenkamp et al., Phys. Rev. Lett. 68, 3765 (1992).
A.A.M. Staring et al., Europhys. Lett. 22, 57 (1993).
S. Möller et al., Phys. Rev. Lett. 81, 5197 (1998).
S.F. Godijn et al., Phys. Rev. Lett. 82, 2927 (1999).
R. Scheibner et al., Phys. Rev. Lett. 95, 176602 (2005).
R. Scheibner et al., Phys. Rev. B75, 041301(R) (2007).

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Peltier Coefficient

Kelvin-Onsager relation $\Pi = ST$

Theoretical estimate for Peltier coefficient

$$\Pi = ST = -(k_B T \ln 2)/(N + \frac{1}{2})e \approx -70 \ \mu V$$

is within factor of 2 from observed signal.

Peltier heating/cooling linear in current, detect only 1f signal!

L.W. Molenkamp et al., Phys. Rev. Lett. 68, 3765 (1992).

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Wiedemann-Franz relation,

Thermal Conductance

 $\kappa pprox L_0 TG \; ,$ $L_0 \equiv k_B^2 \pi^2/3e^2 \; {
m is the \ Lorenz \ number}.$

The Wiedemann-Franz relation (5), using $G = N(2e^2/h)$, implies $\kappa = 1.7 \times 10^{-11}$ W/K (for the N = 5 plateau).

again within factor of 2 from the observed signal.

Wiedemann-Franz yields thermal conductance quantum.

L.W. Molenkamp et al., Phys. Rev. Lett. 68, 3765 (1992).

What about the Channel Resistance?

PHYSICAL REVIEW B

VOLUME 49, NUMBER 7

15 FEBRUARY 1994-I

Electron-electron-scattering-induced size effects in a two-dimensional wire

L. W. Molenkamp and M. J. M. de Jong* Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands (Received 7 October 1993)

The differential resistance of wires defined in the two-dimensional electron gas in an (Al,Ga)As heterostructure is observed to first increase and then decrease with increasing current. It is demonstrated that this behavior results from the interplay of an enhanced electron-electron-scattering rate (due to current heating of the electron gas), and the partly diffusive nature of boundary scattering in the wire. The data are identified as an experimental observation of the Knudsen maximum and the Poiseuille flow regime in electron transport, and confirm an analogy between electron and gas flow that has been anticipated since the 1950s.

TABLE I. Length L, lithographic width W_{lith} , electrical width W, electron density n, mean free path l_b [at 1.5 K (sample I) and 1.8 K (samples II & III)], and specularity parameter α of the samples discussed in this paper.

			the second se		
Sample L	$W_{ m lith}$	W	n	lь	α
(μm)	(μm)	(μm)	$(10^{11} \text{ cm}^{-2})$	(μm)	
20.2	3.9	3.5	2.2	12.4	0.6
63.7	4.0	3.6	2.7	19.7	0.7
127.3	4.0	3.6	2.7	19.7	0.7
	$L \ (\mu m) \ 20.2 \ 63.7 \ 127.3$	$\begin{array}{c c} L & W_{\rm lith} \\ (\mu {\rm m}) & (\mu {\rm m}) \\ 20.2 & 3.9 \\ 63.7 & 4.0 \\ 127.3 & 4.0 \end{array}$	$\begin{array}{c cccc} L & W_{\rm lith} & W \\ (\mu {\rm m}) & (\mu {\rm m}) & (\mu {\rm m}) \\ 20.2 & 3.9 & 3.5 \\ 63.7 & 4.0 & 3.6 \\ 127.3 & 4.0 & 3.6 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

FIG. 1. Differential resistance dV/dI of wire I as a function of heating current I for lattice temperatures of (from top to bottom) 24.7, 20.4, 17.3, 13.6, 10.4, 8.7, 4.4, and 1.5 K.

FIG. 2. Differential resistance dV/dI vs I for (a) wire II, and (b) wire III for lattice temperatures of (from top to bottom) 4.5, 3.1, and 1.8 K. At higher current levels, dV/dI exhibits a quasiquadratic increase with current, similar to that in Fig. 1.

Channel resistance reflects hydrodynamic Electron Flow

PHYSICAL REVIEW B

VOLUME 51, NUMBER 19

15 MAY 1995-I

Hydrodynamic electron flow in high-mobility wires

M. J. M. de Jong^{*} and L. W. Molenkamp[†] Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands (Received 24 October 1994)

Hydrodynamic electron flow is experimentally observed in the differential resistance of electrostatically defined wires in the two-dimensional electron gas in (Al,Ga)As heterostructures. In these experiments current heating is used to induce a controlled increase in the number of electron-electror collisions in the wire. The interplay between the partly diffusive wire-boundary scattering and the electron-electron scattering leads first to an increase and then to a decrease of the resistance o the wire with increasing current. These effects are the electronic analog of Knudsen and Poiseuille flow in gas transport, respectively. The electron flow is studied theoretically through a Boltzmann transport equation, which includes impurity, electron-electron, and boundary scattering. A solutior is obtained for arbitrary scattering parameters. By calculation of flow profiles inside the wire it is demonstrated how normal flow evolves into Poiseuille flow. The boundary-scattering parameters for the gate-defined wires can be deduced from the magnitude of the Knudsen effect. Good agreement between experiment and theory is obtained.

FIG. 3. Differential resistance dV/dI vs current *I* for wire II and III for lattice temperatures of (from top to bottom) T = 4.5, 3.1, and 1.8 K. At higher current levels, dV/dI exhibits a quasiquadratic increase with current, similar to that in Fig. 2. Left panel (IIa) and (IIIa): experimental traces; right panel (IIb) and (IIIb): results of calculations, see Sec. V.

UNIVERSITÄT WÜRZBURG

Gurzhi, Shevchenko, JETP (1968)

 $\frac{1}{l_{ee}} = \frac{E_F}{hv_F} \left(\frac{k_B T}{E_F}\right)^2 \left[\ln\left(\frac{E_F}{k_B T}\right) + \ln\left(\frac{2q}{k_F}\right) + 1 \right]$

Guiliani and Quinn, PRB (1982)

Julius-Maximilians-**Electron-Electron UNIVERSITÄT** WÜRZBURG **Scattering Length in 2D** $\left|\frac{1}{l_{ee}} = \frac{E_F}{hv_F} \left(\frac{k_B T}{E_F}\right)^2 \left[\ln\left(\frac{E_F}{k_B T}\right) + \ln\left(\frac{2q_F^{2D}}{k_F}\right) + 1\right]\right|$ 100 80 Guiliani and Quinn, PRB (1982) 3 x 10¹⁵ m⁻¹ 5.5 $\ell_{ m ee}$ / μm 60 I_{eff}/W 5.0 4.5 4.0 40 /_{ee}/W ¹⁰ 15 n 5

20

0

2.0 x 10¹⁵ m⁻¹

2

3

T/K

4

FIG. 3. Calculated dependence of the effective mean free path $l_{\rm eff}$ on the electron-electron-scattering length l_{ee} (both in units of wire width W), for fixed bulk mean free path $l_b = 5.5 W$. Boundary scattering is modeled by Eq. (5), with $\alpha = 0.7$. The dashed line indicates the asymptote that $l_{\rm eff}$ approaches for large l_{ee} . Note that for $l_{ee} \rightarrow 0$, $l_{\rm eff} \rightarrow l_b$.

5

are the (normalized) drift velocity $\tilde{l}_{\text{eff}}(y)$, as a function of the transverse coordinate y for $l_{ee}/W = 100$ (×), 1 (\triangle), 0.1 (+), 0.01 (\Box), and 0.001 (\Diamond). The inset shows the conductivity L_{eff} as a function of the e-e scattering length l_{ee} and the symbols that indicate to which value each flow profile corresponds. Results are for the bulk mean free path $l_b = 5.5W$ and for angle-dependent boundary scattering with $\alpha = 0.7$.

1.0

Current Heating in Quasi-ballistic Channels: Thermoelectrics and Hydrodynamic Flow

Laurens W. Molenkamp

Physikalisches Institut, EP3 Universität Würzburg

1. small angle scattering

2. ee-scattering for $\vec{p} \approx -\vec{p}$

Due to the different scattering processes there exist two different relaxation times for symmetric and asymmetric processes:

Gurzhi et al., Adv. Phys. 1987

Momentum-Relaxation:
$$|\vec{q}| \approx k_B T / v_F$$

 \Longrightarrow

$$\tau_{ee}^a \approx \tau_{ee} \left(\frac{\varepsilon_F}{k_B T}\right)^2 \propto T^{-4}$$
Energy-Relaxation:
 $\left(\frac{|\vec{q}|}{k_F}\right) \cdot \left(\frac{|\vec{k}|}{k_F}\right) \leq \frac{k_B T}{\varepsilon_F}$
 \longrightarrow
 $\tau_{ee}^s \approx \tau_{ee} \propto T^{-2}$

R.N. Gurzhi et al., Phys. Rev B 74, 3872 (1995)

Three transport regimes:

- 1. Knudsen: $d^2 / l_s \ll l_a$
- 2. 1d-Diffusion: $l_s k_B T / \varepsilon_F \ll d^2 / l_s \ll l_a$
- 3. Poiseuille: $l_a \ll d^2 / l_s$

Not so easy to observe in heating experiment....

Electron Beam in a 2DEG

3 🖂

⊠ 2

⊠ 4

1 🖂

(a)

PHYSICAL REVIEW B

VOLUME 41, NUMBER 2

15 JANUARY 1990-I

Electron-beam collimation with a quantum point contact

L. W. Molenkamp, A. A. M. Staring,* C. W. J. Beenakker, R. Eppenga, C. E. Timmering, and J. G. Williamson Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

> C. J. P. M. Harmans Delft University of Technology, 2600 GA Delft, The Netherlands

C. T. Foxon Philips Research Laboratories, Redhill, Surrey, RH1 5HA, England (Received 12 July 1989)

Collimation of the electron beam injected by a point contact in a two-dimensional electron gas is demonstrated using a geometry with two opposite point contacts as injector and collector. The collimation is maintained over a distance of at least 4 μ m, and is destroyed by a small magnetic field. The inferred collimation factor scales linearly with the point-contact resistance, as predicted by the semiclassical theory.

Abbildung 3.8: Schematische Darstellung der Kollimationsmechanismen. (a) Stufen-Effekt, (b) Horn-Effekt.

$$A = \hbar k_y W$$
 (Semi-classical) action is constant of the motion.

An anisotropic electron momentum distribution remains present over a long time, while the energy relaxation is fast.

kinetic equation:

$$v_x \frac{\partial f}{\partial v_x} + v_y \frac{\partial f}{\partial v_y} = \hat{I}f$$

I: Integral of electron-electron scattering

Considers all electron that scattered, but still preserve the momentum due to small angle scattering events.

$$\nu_{\mathbf{p}'\mathbf{p}} = \frac{1}{n(\varepsilon)} \int d\mathbf{p}_1 d\mathbf{p}_2 (2 \ \Psi_{\mathbf{p}'\mathbf{p}_1\mathbf{p}\mathbf{p}_2} - \Psi_{\mathbf{p}'\mathbf{p}_1\mathbf{p}_2})$$

Integration over all $v_{p'p}$ results in the scattering angle distribution function: $g(\varphi)$

H. Buhmann et al., Fiz.Nizk. Temp. 24, 978 (1998)

UNIVERSITÄT WÜRZBURGEnergy Dependent Scattering

Experiment

Sample Structure

 $L = 3.4 \ \mu m$

 $n_e = 2.45 \times 10^{11} \text{ cm}^{-2} \Rightarrow E_F = 9 \text{ meV}$ $\mu \approx 1 \times 10^6 \text{ cm}^2 (\text{Vs})^{-1} \Rightarrow l_{\text{imp}} \approx 20 \ \mu\text{m}$ $G_{\text{QPC}} = 2e^2/h \ (N = 1)$ T = 1.6 K

Experimental Result

i.
$$I_{ee} > L$$
: $V_d \sim V_i$

- i. $I_{ee} \approx L$: electron with $\epsilon > \epsilon_0$ before reaching d
- ii. I_{ee} < L: increased ee-scattering causes heating of the 2DEG
- iii. increasing heating results in a thermovoltage

Thermoelectric Effect

H. Predel et al., Phys. Rev. B 62, 2057 (2000)

Europhys. Lett., 56 (5), pp. 709-715 (2001)

Fig. 1 – ee-scattering angular distribution function $g(\alpha)$ in a 2D system, 2DEG temperature T = 0, (1) $\varepsilon = 0.12\varepsilon_{\rm F}$, (2) $\varepsilon = 0.4\varepsilon_{\rm F}$, dashed line: 3D case (Callaway's Ansatz). Here angle α is measured with respect to the momentum of scattering electron, p [8]. By definition, $|g(\alpha)|d\alpha$ characterizes the probability that a non-equilibrium electron, $g(\alpha) > 0$ (or hole for $g(\alpha) < 0$), emerges in an interval $d\alpha$ after scattering. The function $g(\alpha)$ is normalized to the unity (this corresponds to the scattering of one electron).

From experiment at zero excess energy, corrected for ${\rm I}_{\rm ee}$

Measurement

$$\Delta V_d^b(r_c, V_i) = exp\left(-\frac{2r_c}{l_{ee}(eV_i)} \operatorname{arcsin} \frac{L}{2r_c}\right) \Delta V_d^0(r_c).$$

Simply by subtracting the ballistic part

Result

Model allows for extraction of opening angle from experiment (Note: "3D" Model does not include collimation effects)

H. Predel, PhD Thesis 2001 Yanovski *et al.*, *Europhys. Lett.*, **56**, 709 (2001)

VOLUME 57, NUMBER 7

15 FEBRUARY 1998-I

Classical rebound trajectories in nonlocal ballistic electron transport

A. S. D. Heindrichs, H. Buhmann, S. F. Godijn, and L. W. Molenkamp 2. Physikalisches Institut, RWTH-Aachen, D-52056 Aachen, Germany (Received 15 August 1997)

We demonstrate experimentally and by Monte Carlo simulation that the negative dips which occur at low magnetic fields on both sides of the main signal in nonlocal electron-beam measurements in semiconductor nanostructures result from electrons following classical rebound trajectories. We propose an alternative measurement geometry that eliminates these effects.

FIG. 1. Measured signal $V_c/I_i = R_{14,32}$ vs magnetic field for different point-contact resistances $R_{\rm PC}$. The channel width is $L = 0.5 \ \mu$ m. All curves are plotted with a constant offset. The left inset displays the contact geometry of the device, and the right inset shows the dependence of the dip value on the collimation peak, only for those measurements where dips are clearly resolved, i.e., $R_{\rm PC} > 1 \ \mathrm{k\Omega}$.

120x4 μ m channel, two different densities (2.5 and 3.2 x 10¹⁵ m⁻²)

Second subband effects? Landau-Zener between Landau levels? Phys.Rev. B **85**, 155307 (2012); **93**, 245436 (2016)

- Hall viscosity not so easily observed with this technique
- (Apart from problematic QPC thermopower)

UNIVERSITÄT WÜRZBURG

- GaAs/AlGaAs 2DEG
- n = 2.3 10^{11} cm⁻², μ = 10^{6} cm²/Vs
- Ti/Au-surface electrodes
- (opt. and e-beam lithography)
- Au/AuGe ohmic contacts

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

- Constant Interaction model:
 - QD = small capacitor
 - energies depend linearly on V_{gate}
 - coefficients do not depend on N (number of electrons)
- Energy needed to add one electron:
 - qm. Energy E_{qm} ~ 100 µeV
 - Coulomb Interaction $E_C = \frac{1}{2} \frac{e^2}{C}$ ~ 2 meV
 - ~
 - $E_C = E_{qm} + E_C$
- Parameters accessible in conventional transport experiments

V_{gate}

Quantum Dot (QD)

Е

- strong influence on hybridization of leads and QD

e - like

←

e - like

e - like

sequential tunneling

A.A.M. Staring et al., Europhys. Lett. 22, 57 (1993).

sequential tunneling

Bo_II3C

cotunneling contribution

cotunneling contribution

[M. Turek and K.A. Matveev, PRB, 65, 115332 (2001)]

R. Scheibner et al., PRB 75, 041301 (2007)

cotunneling contribution

$n_s = 3.4 \text{ x } 10^{11} \text{ cm}^{-2}$	$G_{qpc} = 4 \ e^2 / h$
μ = 1 x 10 ⁶ cm ² / (V sec)	$(N_{qpc}=2)$

S. Godijn et al., PRL 82, 2927 (1999)

Scaling Results

 $I_{heating} = 40 \text{ nA}$ $T_e = 255 \text{ mK}, T_L = 40 \text{ mK}$

S. Möller et al., PRL 81, 5197 (1998)

- existence of a magnetic moment on the QD can lift the CB
- transport mechanism: spin scattering
- hybridization of free electrons in the leads with localized magnetic moment leads to resonance at the Fermi edge

Kondo Resonance

Spin-Correlated QD

Spin-Correlated QD

Scheibner et al. PRL 95, 176602 (2005)

Entropy change ΔS

adding one electron to an empty site: $\Delta S = k_B (\ln g_f - \ln g_i) = k_B (\ln 2 - \ln 1) = k_B \ln 2$

2.

Spin-Entropy Transport

e-like transport from the hot to the cold reservoir $\Delta S = k_B (\ln g_f - \ln g_i) = k_B (\ln 2 - \ln 1) = k_B \ln 2$

→ S_{SE}=-k_B/e ln 2

h-like transport from the cold to the hot reservoir $\Delta S = k_B (\ln g_f - \ln g_i) = k_B (\ln 1 - \ln 2) = -k_B \ln 2$

→ S_{SE} =- k_B /e ln 2

3. e-like transport from the hot to the cold reservoir $\Delta S = k_B(\ln g_f - \ln g_i) = k_B(\ln 1 - \ln 2) = -k_B \ln 2$

→ S_{SE} =k_B/e ln 2

4. h-like transport from the cold to the hot reservoir $\Delta S = k_B(\ln g_f - \ln g_i) = k_B(\ln 2 - \ln 1) = k_B \ln 2$

→ S_{SE} =k_B/e ln 2

R. Scheibner et al., PRL **95**, 176602 (2005) R. Scheibner, PhD-Thesis, Würzburg 2007

Figure 1. (a) Schematic design of the gate structure (black). Gates are labeled with numbers 1–7, P1 and P2. Electronic reservoirs are denoted S, D (both blue) and H (red). (b) Stability diagram of the QD-system showing the conductance of QD2. The characteristic honeycombs are indicated with red lines. QD occupation numbers are denoted with *N*, *M*. $\Delta V_{\rm C}$ indicates the capacitive inter-dot coupling energy. (c) Current signal $\Delta I_{\rm D}$ in reservoir D with $V_{\rm S,GND} \approx -30 \ \mu \rm{V}$ for $T_{\rm H} \approx T_{\rm S,D} + 100 \ mK$.

New J. Phys. 17 (2015) 113003

doi:10.1088/1367-2630/17/11/113003

New .	lournal	of	Phy	SİC
The open acce	ss journal at the fo	refront o	of physics	

IOP Institute of Physics Published in partnership with: Deutsche Physikalische Gesellschaft and the Institute of Physics

PAPER

Thermal gating of charge currents with Coulomb coupled quantum dots

S

H Thierschmann $^{1,3},$ F Arnold $^{1},$ M Mittermüller $^{1},$ L Maier $^{1},$ C Heyn $^{2},$ W Hansen $^{2},$ H Buhmann 1 and L W Molenkamp 1

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Allowing charge fluctuations on dot 1 enables (disables) charge transport through dot 2

What we really wanted is slightly different:

Figure 1 | Operating principle of the energy harvester. Two quantum dots are capacitively coupled, exchanging energy in packages of *U*, but not particles. One quantum dot (QD_C) is connected to two terminals, L and R. The other (QD_G) is coupled to a third terminal, H, which is at a higher temperature. When charge fluctuations occur according to the depicted four-stage sequence, an energy package is extracted from reservoir H and is delivered to the cold subsystem. There, these fluctuations are rectified and converted into a charge current when the product of tunnelling coefficients $\Gamma_{LO}\Gamma_{R1}$ differs from that of the opposite process $\Gamma_{RO}\Gamma_{L1}$ (not shown), that is, when both particle-hole symmetry and left-right symmetry are broken.

Original proposal: R. Sanchez, M.Büttiker, Phys. Rev. B 83, 085428 (2011)

and it actually occurs in between the triple points, where thermal gating is not dominant – but only for asymmetric barriers:

_ETTERS

NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2015.176

Figure 3 | 2*f* current in reservoir R (I_R) for configuration A in the vicinity of a TP pair. Black lines denote the stability region borders as obtained from the conductance data. **a**, Experimental data for $0 < \Delta \mu_{LR} < 10 \ \mu$ V. The signal around the TP pair is a result of thermal gating (regions I–IV). **b**, The signal becomes reversed if $\Delta \mu_{LR}$ is inverted ($-10 \ \mu$ V $< \Delta \mu_{LR} < 0$). The signal between the TPs is due to the proposed mechanism of energy harvesting. It stays negative, irrespective of the sign of the voltage bias $\Delta \mu_{LR}$. **c**, I_R as a function of squared heating current I_R^2 between two TPs for slightly different Λ . **d**, Model calculation for energy-dependent tunnelling barriers of QD_C, symmetric with respect to L and R. The signal between the TPs is zero, and only the effect of thermal gating is present. **e**, Calculation using asymmetric and energy-dependent tunnel barriers as obtained for configuration A with $0 < \Delta \mu_{LR} < 10 \ \mu$ V. **f**, Model calculations for $-10 \ \mu$ V $< \Delta \mu_{LR} < 0$.

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

- Current heating is a flexible technique for thermoelectric measurements on nanostructures. Avoids phonon drag, substrate effects.
- Many detailed investigations of quantum dot transport
- First observation of Kondo thermopower on a single impurity
- Multiterminal Thermoelectrics

Collaborators:

Stefan Möller, Sandra Godijn, Henning Predel, Ralph Scheibner, Tsvetelina Naydenova, Holger Thierschmann, Yuan Yan, Valentin Müller

Hartmut Buhmann, Charles Gould

Funding: DFG