New Physics Search with Parameterized NN

Takuya Nobe
University of Geneva
2/8/2019

Search for new physics using ML

- If we want to test a specific model, ML classifier is a powerful tool to enhance signals
 - e.g. H→bb
 is "observed" at ATLAS
 - Using BDT: $3\sigma \rightarrow 5\sigma$ (!!)
- Search for hypothetical new particles with unknown parameters e.g. resonant mass
 - Training at each mass point? probably no sensitivity at mass points not used in the training
 - We must NOT overlook these signals

Parameterized NN (pNN)

- Adding a parameter of the physics model (θ; for example mass) to the input of Neural Network
- $(x_1, x_2, ...)$ is the input variables (e.g. p_T , η , φ , E, etc.)
- Signal: all generated mass points are mixed up and used in the training
- Background: θ is randomly assigned to reproduce the same distribution used for the signal sample in the training

pNN -cont'd

- An example of narrow ttbar resonance (X→tt) search
 - Solid black line: pNN trained with signals with m_X=500, 1000, 1250 and 1500GeV (without 750GeV)
 - Black dots: a single NN trained at m_X = 750GeV

- Since m_X is randomly assigned for bkg sample, the "effective" MC statistics
 of bkg depends on number of mass points used in the training
- But it doesn't mean we have to reduce number of mass points in the training.
 If we can't ensure the linearity of kinematic variables between 2 mass points,
 the performance at the intermediate mass region may deteriorate

CMS HH→bbWW search

CMS-PAS-HIG-17-006

- Using pNN
 - Input variables: dijet and dilepton kinematics + missing E_T
 - m_X=(260, 270, 300, 350, 400, 450, 500, 550, 600, 650, 750, 800, 900)GeV are used in the training
- Background normalization is constrained in m_{h→bb} sideband region
- Background modeling study should be repeatedly done at each mass point scanned in the interpretation

f(x, 400 GeV) in $\mu\mu$ ch.

x65 sets of distributions

CMS HH→bbWW search -cont'd

- Hypothetical test has been done in 10GeV step
 - i.e. 65 independent analyses (260GeV to 900GeV) has been performed
 - i.e. background modeling of f(x, 260GeV), f(x, 270GeV), ..., f(x, 900GeV) are carefully studied
- The same data are used repeatedly at each mass point
- Expected limit is smooth (nice feature of pNN)

Improvement by ML v.s. simplicity

- If we expect clear peak of new physics signal
- 10-30% sensitivity gain by using NN

 ⇔ ×N background modeling studies (N: number of mass points)

 e.g. anomaly detection (antibackground tagger) with adversarial NN is a better approach in that case?

Good use case of pNN?

- If we can't reconstruct the theoretical parameters directly due to missing particles e.g. in SUSY and DM searches?
- Multi-dimensional pNN might be useful, but it depends on statistics of bkg samples

Signal does not have "peak"

Signal kinematics depends on several parameters

Summary

- pNN expands input of NN to include not only experimental observables but also model parameters
- It can smoothly interpolate the sensitivity between parameters used in the training
- When the interpretation, anyway we need to perform independent analyses at each parameter point
 - xN efforts needed for background modeling study
 - In case we can reconstruct theoretical parameters directly, is it worth the cost?
- Might be useful for searches for invisible particles