Energy flow regression using deep learning

Sanmay Ganguly, Michael Pitt, Jonathan Shlomi, Eilam Gross Weizmann Institute Of Science

Hammers & Nails 2019

04/08/2019

In collaboration with Marumi Kado

How do these energy deposits form and recorded?

How these showers actually look like?

The cells are accumulation of energy, deposited by the shower steps.

The basic problem

The basic problem

Energy budget in a given cell

1703.10485

If there is significant overlap of charged/neutral energy per cell, this technique is bound to give erroneous results.

☑Can pixel wise energy regression do better?

Basic setup to create the dataset

ECAL: Pb (passive) + LAr (active)

HCAL: Fe (passive) + Scint. (active)

Basic setup to create the dataset

Basic setup to create the dataset

Our GEANT4 simulation takes into account the ATLAS calorimeter granularity, the proper composition of absorber/scintillator material as well as accordion geometry of calorimeter to produce a realistic energy response.

We can also trace back the shower to determine the particle origin.

Machine learning setup

Summary

- We aim to build a robust energy regressor per calorimeter cell.
- The target is to have a ML based energy flow method and increase EM/hadronic energy response.
- With a proper particle identification, its possible to build a full ML based pflow method.
- ☑ Initial image based method has decent performance.
- Will try out alternative GNN methods.

Outlook: GNN, an alternative attempt

Will try to make a graph from the energy cells and try yo do a node regression.

Backup

ATLAS Simulation

UNET model

