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"The revolution will not be supervised" (vann Lecun, 2017)
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Topics

e General discussion about Reinforcement
Learning

e Why build models?

e Using generative models for representations
learning:
o GQN
o SimCore

e Some thoughts on applications of group theory
in ML
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Reinforcement Learning

G DeepMind



Let's consider a discrete Markov Decision Process
(MDP)
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RL in a discrete world

Set of States

Set of Rewards
Set of Actions
Reward function

Model/Environment

0 DeepMind

S=41 . N}
el
A=11 = NI
r:SxA—-R
m:SxA—>S



Let's consider a discrete world MDP

Sp,Qp) = Z r(St,a
Q( i O) all pos51ble paths 7 (t’ t

Optimal decision a*(sg) = argmax_Q(so, a)
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Let's consider a discrete world MDP

So,ap) — Z r\St,a
Q( o2 O) all pos51ble paths ! (t7 t

Set of States

Set of Rewards
Set of Actions
Reward function

Model/Environment

Q-function
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8:{1,...,NS}
R=1{1... N}
A={1,...,N,}
r:SxA—-R
m:SXA—S
Q:SxARY
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How much data do we need to learnr m and Q?

Amount of Datatolearn f ~ e 17 Pro® ienstn ol

DL(r) = N, N, log,(N,)
DL(m) = NsN, log,(Ns)
DL(Q) = N,N,H log,(N,)



When is it worth learning a model?
DL(r +m) = NsNglogy (N, ) + NN, logs(Ns)

DL(Q) = N,N,H log,(N,)

Hypothesis: It will be favorable to learn a model when
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When is it worth learning a model?
DL(r +m) = NsNglogy (N, ) + NN, logs(Ns)

DL(Q) = N,N,H log,(N,)

Hypothesis: It will be favorable to learn a model when

DL(Q) > DL(r 4+ m)

(H — 1) logy(N,) > logy(Ns)
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When is it worth learning a model?

(H i 1) logZ(N'r) > 10g2(Ns)

In general, we operate in a regime where Ns >> Nr, H. So
it seems that we would always prefer to learn Q from
scratch rather than learning a model first.

Q DeepMind



When is it worth learning a model?
Many tasks, a single world

L(H e 1) 10g2(Nr) — logz(Ns)

For a sufficiently large number of different tasks L, it
will require less data if we learn a model first.

Q DeepMind



Summary

e Learning a model first and using that to compute
Q-functions via Monte-Carlo can be more data-efficient in
some cases, specially in multi-task problems

e Models offer other advantages in addition to planning:
o Notion of uncertainty or novelty
o Unsupervised learning of useful features
o Unsupervised learning to use complex memory
architectures
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RL in a stochastic and partially observed world
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RL in a stochastic and partially observed world
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RL in a stochastic world

Policy 7r(at|5150,...,t, a'O,...,(t—l))

Model/Simulator m($t|$o,...,(t—1),ao,...,(t))

Path/trajectory T={(Z1,a1),...,(%1,at),... (TH,aH)}

QW(307 a’O) = IEp('r) Z 7tr(3t7 a’t) S0 dO(ao)
o
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RL in a stochastic world

Policy 7r(at|5150,...,t, a'O,...,(t—l))

Model/Simulator m($t|$o,...,(t—1),ao,...,(t))

Path/trajectory T={(Z1,a1),...,(%1,at),... (TH,aH)}

QW(‘SOaa’O) = lr@ Z’yt’r(staat) 807d0(a’0)
Bees

Path Integral
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RL in a stochastic world

Stochastic Simulator/Model

State
distributions <=
(Fokker-Pl anck) Feynman-Kac lemma

Control via
path-integrals

Path Integral Formulation of Stochastic Optimal Control with Generalized Costs Yang et al
A Generalized Path Integral Control Approach to Reinforcement Learning Theodorou et al
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https://www.sciencedirect.com/science/article/pii/S1474667016427138
http://www.jmlr.org/papers/volume11/theodorou10a/theodorou10a.pdf

RL in a stochastic world

Q" (s0,a0) = Ep(r)
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Z’Ytr(sta a’t)
s

S0, dO(ao)




RL in a stochastic world

Qﬂ('SOaa’O):IEp(T) Z’Y r(S¢, at)

Q" (s0,a0) & —> >17t"‘ Staa't

b DeepMind

S0, dO(CL())




RL in a complex world

IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
Lasse Espeholt, Hubert Soyer
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https://arxiv.org/abs/1802.01561

RL in a stochastic world

Qﬂ(307 CL()) — Ep(’T) Z 'Yt'r(sta a’t) S0, dO(CL())

Q" (s0,a0) ~ —> >j i a;)

Q (80, CLO — > > = ’I"(St a; ) Wcurrent(af)

Told (at )

IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
Lasse Espeholt, Hubert Soyer
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https://arxiv.org/abs/1802.01561

"Canonical” Agent
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IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
Lasse Espeholt, Hubert Soyer
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https://arxiv.org/abs/1802.01561

Models and Reinforcement Learning
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Neural Scene Representation and
Rendering

S. M. Ali Eslami, Danilo J. Rezende, et al. Science, 2018
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The Model

quat,

Neural scene
representation
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Predicted
view
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Representation network f

“Neural Scene Representation and Rendering”. S. M. Ali Eslami. Danilo J. Rezende, et al. Science, 2018.

Generation network g



https://science.sciencemag.org/content/360/6394/1204

The Model
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“Neural Scene Representation and Rendering”. S. M. Ali Eslami. Danilo J. Rezende, et al. Science, 2018.
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https://science.sciencemag.org/content/360/6394/1204

The Model

Neural scene
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https://science.sciencemag.org/content/360/6394/1204

The Model
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“Neural Scene Representation and Rendering”. S. M. Ali Eslami, Danilo J. Rezende, et al. Science, 2018.
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Near-Deterministic Predictions

Observation Observation

¥ s T g ol
i L3 -

Prediction Truth " Prediction Truth Prediction  Truth Prediction Truth

“Neural Scene Representation and Rendering”. S. M. Ali Eslami, Danilo J. Rezende, et al. Science, 2018.



Data fusion and predicting with uncertainty

observations

HHHH

ground truth neural rendering

observation

observation

“Neural Scene Representation and Rendering”. S. M. Ali Eslami, Danilo J. Rezende, et al. Science, 2018.

neural rendering




Quantifying uncertainty
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“Neural Scene Representation and Rendering”. S. M. Ali Eslami, Danilo J. Rezende, et al. Science, 2018.



Quantifying uncertainty
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Quantifying uncertainty

Observations Prediction Truth Observations Prediction Truth
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“Neural Scene Representation and Rendering”. S. M. Ali Eslami, Danilo J. Rezende, et al. Science, 2018.
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Viewpoint invariance of the learned scene
representations
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“Neural Scene Representation and Rendering”. S. M. Ali Eslami, Danilo J. Rezende, et al. Science, 2018.



Factorization of the learned scene

representations
Blue _Red
sphere  sphere
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sphere ,,,.sphere
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“Neural Scene Representation and Rendering”. S. M. Ali Eslami, Danilo J. Rezende, et al. Science, 2018.



Factorization of the learned scene
representations

B Spheres Reds Target Reconstruction

Training data includes

Th|s particular model never observed red
spheres but can reconstruct accurately

“Neural Scene Representation and Rendering”. S. M. Ali Eslami, Danilo J. Rezende, et al. Science, 2018.



Learning useful representations for control

Pretraining views

Observation Prediction Truth

Reward

Fixed camera
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Neural Scene Representation and Rendering”. S. M. Ali Eslami, Danilo J. Rezende, et al. Science, 2018.
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Deep-Learning with Uncertainty

X
Slide credit: Marta Garnelo
“Conditional Neural Processes”. Marta Garnelo, Dan Rosenbaum, et al. ICML, 2018.



TL;DL

e GOQON can learn factored scene representations

e Itis also a kind of meta-learning model (learning to do
one-shot scene inference)

e |t doesn't have a notion of time

e [t requires knowledge about "camera locations”



Shaping Belief States with Generative
Environment Models for RL

Karol Gregor, Danilo Rezende, Frederic Besse,
Yan Wu, Hamza Merzic, Aaron van den Oord,

G DeepMind


https://arxiv.org/abs/1906.09237

Example (actual result)

Top down view
reconstructed Without belief

from agent rep. state training

What agent  Actual top
sees down view

550 -
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350 -
300 -
250 —+5

Score

With belief
state training

Level = rat_goal driven

I
3 45 6 7 8
1


https://docs.google.com/file/d/1Z7UMcpgW_UhC8LYRyRLPOV44TVU-kbO8/preview
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Model Rollouts
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Formation of belief states



https://docs.google.com/file/d/1wOXevDf1QQhkdCDd3tJdBMBwrVrNaEoy/preview

Contrastive

- -
Top down view reconstruction error (mapping) . "
1) Longer simulations improve map decoding performance (if proper generative S —
model is used) ﬁ A
2) Generative model works better than deterministic decoder and CPC r

3) Kanerva Machine episodic memory works the best
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Position and orientation prediction (localization)

1) Longer simulations improve localization
2) CPC works the best

Overshoot Length = 1 Overshoot Length = 12
100 - I I I L | I | I L

49 = -

Accuracy(%)

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
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More complex naturalistic environment
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https://docs.google.com/file/d/1wtKeDuKxpqLU2-79ShRxQWej6TLAB2Z8/preview
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RL Performance

DM Lab
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Learns to build stairs and towers



https://docs.google.com/file/d/1WHMrGYGkG4S2mWzh7Rhi7Kwa3EKqfypX/preview
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building them

Building stairs

Building towers

input an.rsatd
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Naturalistic landscape - imagines eating the yellow block
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Towards a Definition of
Disentangled Representations

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende, Alexander
kerchner
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Motivations

What is the role Group theory in *feature/representation learning?
invariance vs covariance vs equivariance

When is "Disentanglement” useful?

Our intuition should not rely on a specific coordinate system

Lack of universality => lack of generalisation to domains where we

have no intuition



Group theory 111
What is a Group?

e Agroup G is a set endowed with a binary operator 0. The operator must satisfy the following
properties:
o Closure: x1, x2 in G, then x1 ox2isin G
o Identity: there is an e in G such that e o x = x (for all x in G)
o Inverse: forany xin G thereisaysuchthatyox=e
o Associativity: x1 0 (x2 o0 x3) = (x1 0 x2) o x3

Example: Example:
G = (Reals, o=+,e =0) G = (Rotation matrices, o=matrix product, e =)



Group theory 111
What is a representation of a group?

A representation of a group is a mapping from
group element g to an operator rho(g) acting
on a different space H with operator x. Such
that \rho (g1 0 g2) =\rho(g1) x \rho(g2)

5 A 3rd )

% y
, A ,
¥y y
%dxz dxz_yz




Group theory 111
What is an irreducible representation of a group?

Representations that leave invariant
some subset of H that cannot be broken
down into smaller invariant subsets.



Group theory 111
What is a Lie Group?

A Lie Group is a group that is also a
manifold (e.g. Translations and
Rotations)



Group theory 111
Invariance and Equivariance

We say that our features f are invariant under a
symmetry group G iff f(g o data) = f(data) for
any g in G. Example: output of pooling layers

We say that we have equivariant features f under
a symmetry group G if f(g o data) = J x f(data)

Example: output of convolution layers, vector
fields



Too abstract?

p(y|x, 9) = N(y|WR(9)WTx,02)

1 ——
p(p;) = 2 To(T) &P (n; T(¥4))

Learning the Irreducible Representations of Commutative Lie Groups
2D/3D Rotation-Invariant Detection using Equivariant Filters and Kernel Weighted Mapping


https://arxiv.org/pdf/1402.4437.pdf
https://lmb.informatik.uni-freiburg.de/Publications/2012/LWR12/liu_cvpr2012.pdf

Invariance, Equivariance, Classifiers and
Generative Models

When building classifiers it is desirable that its output to be invariant under
some groups (e.g. translation, rotation).

That is, we want to build both features and losses such that Loss(g o data) =
Loss(data), where o = 2D Translations x 2D Rotations

However, when building generative models, we should seek invariant losses,
but the representations should be equivariant. This is because invariant
representations loose information, destroying the ability to reconstruct the
data.



General Recipe to build invariant networks

First, build equivariant features d(goz) =T,0 ¢(x)

Second, apply a 'pooling’ operator kr) = / du(g)Ty o ¢(x)

Example: convnets



Weyl's Principle

The elementary components of a system are
the irreducible representations of the
symmetry group of the system. Example:
entire physics.



Why does it matter to Al?

3D OBJECTS are irreducible representations
of 3D Translation x Rotation x Scale groups
(Galileo Group)



Group theory 111

Weyl principle => Irreducible representations
< Disentanglement (since we have broken
down our representations into the smallest
possible invariant sets)



Towards a Definition of Disentangled
Representations

A space Z is disentangled with respect to a group decomposition G = G x G x .. x G if:

1) Thereisanaction-:GxZ — Z
2) Themap f: W — Z is equivariant between the actions on W and Z
3) Thereis a decomposition Z = Z x Z x .. x Z  such that each Z is fixed by the action of all G j#i and affected only by G

The actions are assumed to preserve any structure of Z (e.g. be linear or continuous).



Towards a Definition of Disentangled
Representations
data

samples 2 latent traversals 2

4 A -
<< >

Z1 X position

Z2 y position

c colour

(greyscale)

Z3

generative factors X vs Y X vs C

H H % b
-------------------
Ty o ARp—. SUTE0Nin BRsRtTIIRIRE =

H
oo ane® LSRRI RURRIZINNEIZIN NN SE RN RN N
seaEesssss Bisisss frsisnnnn n B 2

H i 8
O TR T R LT COR PR T P TR " sngeegiinnnigginans SesnsaniBisnnien St tanns

---------------------------------

y/C. | 22 . =



Summary

The language of symmetry groups and differential geometry allows for
generalisation of useful tools such as conv operators beyond classification
of images.

Such ideas have only been superficially explored in ML

Do you want objects to emerge from neural nets + data? Let's build "Weyl
machines” (or automated physicists).
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