The sulfation of heparan sulfate regulates IL-21 bioavailability and signal strength that control germinal centre B cell selection and differentiation Zhian Chen^{1,2}, Yanfang Cui³, Yin Yao^{1,2,4}, Bo Liu⁵, Joseph Yunis^{1,2}, Xin Gao², Naiqi Wang¹, Zewen Kelvin Tuong^{6,7}, Hongjian Sun¹, Hao Wang², Siling Yang¹, Runli Wang², Yew Ann Leong⁸, David Simon Davis², Jiahuan Qin⁹, Kaili Liang⁹, Jun Deng⁹, Conan K Wang^{10,11}, Yen-Hua Huang¹⁰, Jonathan A. Roco², Sam Nettlefield¹, Huaming Zhu^{12,13}, Huajun Xu^{12,13}, Zhijia Yu², David Craik^{10,11}, Zheng Liu⁴, Hai Qi⁵, Christopher Parish², Di Yu^{1,2,9} ¹The University of Queensland Diamantina Institute, The University of Queensland, Faculty of Medicine, Brisbane, QLD, Australia ²The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia ³Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, China ⁴Department of Otolaryngology-Head and Neck Surgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China ⁵Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing, China. ⁶Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK ⁷Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK ⁸Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia ⁹China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ¹⁰Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia ¹¹Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia ¹²Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China ¹³Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China. Mailing address: zhian.chen@uq.edu.au ## Abstract In antibody responses, mutated germinal centre B (B_{GC}) cells are positively selected for re-cycle or differentiation. As the products from GCs, memory B cells and antibody-secreting cells (ASCs) support high-affinity and long-lasting immunity. Positive selection of B_{GC} cells is controlled by signals from B cell receptor (BCR) and follicular helper T (T_{FH}) cells-derived signals, in particular the costimulation through CD40. Here we demonstrate that the T_{FH} cell effector cytokine IL-21 joins BCR and CD40 in supporting B_{GC} selection and reveal that strong IL-21 signalling prioritises ASC differentiation *in vivo*. B_{GC} cells, compared to non- B_{GC} cells, show significantly reduced IL-21 binding and attenuated signalling, which is mediated by low cellular heparan sulfate (HS) sulfation. Mechanistically, N-Deacetylase and N-Sulfotransferase-1 (Ndst-1)-mediated N-sulfation of HS in B cells promote IL-21 binding and signal strength. Ndst-1 is downregulated in B_{GC} cells and upregulated in ASC precursors, suggesting a selective desensitisation to IL-21 in B_{GC} cells. Thus, a special biochemical regulation of IL-21 bioavailability and signal strength sets a balance between the stringency and efficiency of GC selection.