Ferroptosis regulates follicular helper T cell function

Zhian Chen¹, Yin Yao², Naiqi Wang¹, Hao Zhang³, Zheng Liu², Di Yu^{1,4}

¹The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia,

 ²Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
³Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
⁴Ian Frazer Center for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia, di.yu@ug.edu.au

Abstract

Follicular helper T (T_{FH}) cells are a specialized subset of CD4⁺ T cells that essentially support germinal center responses where high-affinity and long-lived humoral immunity is generated. The regulation of T_{FH} cell survival remains unclear. Here we report that T_{FH} cells show intensified lipid peroxidation and altered mitochondrial morphology, resembling the features of ferroptosis, a form of programmed cell death that is driven by iron-dependent accumulation of lipid peroxidation. Glutathione peroxidase 4 (GPX4) is the major lipid peroxidation scavenger and is necessary for the survival of T_{FH} cells, which are otherwise susceptible to ferroptosis due to intensified TCR signals. The deletion of GPX4 in T cells selectively abrogated T_{FH} cells and germinal center responses in mice induced by protein immunization and vaccination. Selenium supplementation enhanced GPX4 expression in T cells, increased T_{FH} cell numbers and promoted antibody responses in mice and humans. Our findings reveal the central role of the selenium–GPX4–ferroptosis axis in regulating T_{FH} function, which can be targeted to enhance humoral immunity in infection and following vaccination.