Tankyrase inhibition blocks Wnt/β-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer

O. Arqués¹, I. Chicote¹, I. Puig¹, S. Tenbaum¹, G. Argilés², R. Dienstmann^{2,3}, N. Fernández², G. Caratù⁴, J. Matito⁴, D. Silberschmidt⁴, J. Rodon⁵, S. Landolfi⁶, A. Prat⁷, E. Espín⁸, R. Charco⁹, P. Nuciforo¹⁰, A. Vivancos⁴, W. Shao¹¹, J. Tabernero², H. Palmer^{1*}

 ¹Vall d'Hebron Institut d'Oncologia (VHIO). Stem Cells and Cancer Laboratory. Barcelona, Spain. ²Gastrointestinal and Endocrine Tumors Group, Vall d'Hebron Institute of Oncology (VHIO). ³Sage Bionetworks (non-profit research organization), Fred Hutchinson Cancer Research Centre. Seattle, WA, USA. ⁴Vall d'Hebron Institut d'Oncologia (VHIO).
Genomics Cancer Group. Barcelona, Spain. ⁵Early Clinical Drug Development Group, Vall d'Hebron Institute of Oncology (VHIO). Barcelona, Spain. ⁶Department of Pathology,
Hospital Universitari Vall d'Hebron. Barcelona, Spain. ⁷Vall d'Hebron Institut d'Oncologia (VHIO). Translational Genomics Group. Barcelona, Spain. ⁸General Surgery Service,
Hospital Universitari Vall d'Hebron, Barcelona, Spain. ⁹Department of HBP Surgery and Transplantation, Vall d'Hebron University Hospital. Barcelona, Spain. ¹⁰Vall d'Hebron Institut d'Oncologia (VHIO). Molecular Oncology Group. Barcelona, Spain. ¹¹Novartis Institutes for Biomedical Research, Inc. Cambridge, MA, USA. Presenting author: <u>oarques@vhio.net</u>

Keywords: *PI3K*, *Wnt/β-catenin*, *Colorectal cancer*, *drug-resistance*, *biomarkers*.

Abstract

Purpose

Oncogenic mutations in the KRAS/PI3K/AKT pathway are one of the most frequent alterations in cancer. Although PI3K or AKT inhibitors show promising results in clinical trials, drug-resistance frequently emerges. We previously revealed Wnt/ β -catenin signaling hyper-activation as responsible for such resistance in colorectal cancer (CRC). Here we investigate Wnt-mediated resistance in patients treated with PI3K or AKT inhibitors in clinical trials and evaluate the efficacy of a new Wnt/tankyrase inhibitor, NVP-TNKS656, to overcome such resistance.

Experimental design

CRC patient-derived sphere cultures and mouse tumor xenografts were treated with NVP-TNKS656, in combination with PI3K or AKT inhibitors.

We analyzed progression-free survival of patients treated with different PI3K/AKT/mTOR inhibitors in correlation with Wnt/ β -catenin pathway activation, oncogenic mutations, clinico-pathological traits and gene expression patterns in 40 CRC baseline tumors.

Results

Combination with NVP-TNKS656 promoted apoptosis in PI3K or AKT inhibitor-resistant cells with high nuclear β -catenin content. High FOXO3a activity conferred sensitivity to NVP-TNKS656 treatment. 13 out of 40 patients presented high nuclear β -catenin content and progressed earlier upon PI3K/AKT/mTOR inhibition. Nuclear β -catenin levels predicted drug-response whereas clinico-pathological traits, gene expression profiles or frequent mutations (KRAS, TP53 or PIK3CA) did not.

Conclusions

High nuclear β -catenin content independently predicts resistance to PI3K and AKT inhibitors. Combined treatment with a Wnt/tankyrase inhibitor reduces nuclear β -catenin, reverts such resistance and represses tumor growth. FOXO3a content and activity predicts response to Wnt/ β -catenin inhibition and together with β -catenin may be predictive biomarkers of drug-response providing a rational to stratify CRC patients to be treated with PI3K/AKT/mTOR and Wnt/ β -catenin inhibitors.