Integrin alpha V beta 3 expression in luminal breast cancer cells promotes their reversion to acinar-like structure in conjunction with their relevant microenvironment.

¹Hanan Abu-Tayeh, ¹Keren Weidenfeld, ¹Alisa Zhilin-Roth, ¹Sagi Schif-Zuck, ²Sonja Thaler, ³Cristina Cotarelo, ⁴Tuan Zea Tan, ^{5,6} Jean Paul Thiery, ⁷Jeffrey E. Green, ⁸Geula Klorin, ⁸Edmond Sabo ^{2,9} Jonathan P. Sleeman and <u>¹Dalit Barkan.</u>

¹Department of Human Biology, University of Haifa. Haifa, Israel. ²Karlsruhe Institute of Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Karlsruhe, Germany. ³Department of Pathology, University Medical Center Mainz, Langenbeckstr, Mainz, Germany. ⁴Cancer Science Institute of Singapore, National University of Singapore. ⁵Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore. ⁶Institute of Molecular and Cell Biology, A*STAR, Singapore. ⁷Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, USA. ⁸Department of Pathology, Rambam Medical Center, Israel. ⁹Medical Faculty Mannheim, Centre for Biomedicine and Medical Technology Mannheim (CBTM), University of Heidelberg, Mannheim, Germany.

Re-establishing tissue organization of breast cancer cells into acini was shown previously to override their malignant phenotype. Here we demonstrate that expression of Integrin $\alpha\nu\beta3$ (Int- $\alpha\nu\beta3$) in luminal A breast cancer cell lines can revert them back to a normal-like acini when cultured in their relevant physiological microenvironment. This reversion promoted their growth arrest and was mediated by Int- $\alpha\nu\beta3$ expression and activation on cancer luminal progenitor like cells (CLPC). Furthermore, this reversion was mediated by donwregulation of NOTCH-4 expression and downstream signaling. Intriguingly, the reverted acini resembled pre-neoplastic stage of breast tissue; likewise Int- $\alpha\nu\beta3$ expression was mostly detected in a benign stage of the human breast tissues.

Hence, all together these data propose a novel strategy to normalize the malignant phenotype by reprogramming CLPC to differentiate via the expression of Int- $\alpha V\beta 3$.

Significance: Recurrence beyond 10-year survival is the principal cause of mortality of luminal A breast cancer patients that no longer respond well to conventional therapies. Given that these cancers are enriched with CLPC makes them good candidates for differentiation therapy by which reprogramming of CLPC to differentiate to a more benign state may be achieved by promoting downstream signaling that emanate from Int- α V β 3. Therefore, promoting such differentiation may be utilized to combat recurring breast cancers thus keeping them on halt.