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High level view of 
Science 

“The purpose of science is  

to find meaningful simplicity  

in the midst of  

disorderly complexity” 
Herbert Simon 

This can also serve to describe the goal of 
clustering 

 



Clustering is one of the most widely used tool 
for exploratory data analysis. 
   Social Sciences 
    Biology 
    Astronomy 
    Computer Science 
    . 
    . 
All apply clustering to gain a first understanding 
of the structure of large data sets. 

 The Theory-Practice Gap 

Yet, there exist distressingly little  
theoretical understanding of clustering 



Understanding the clustering task 

l Not just analyzing a particular algorithm 
(say EM or K-Means ++) 

l Not just optimizing a particular cost 
function (say, k-means). 

l Not just estimating particular data 
generating model (say mixture of 
Gaussians). 



Lack of Clustering Theory 

 Pick any Machine Learning course or textbook. 
E.g., the Stanford ML (CS 229) syllabus: 
 
Learning theory. (3 classes) 
Bias/variance tradeoff. Union and Chernoff/Hoeffding bounds. VC 
dimension. Worst case (online) learning. 
Practical advice on how to use learning algorithms. 
 
Unsupervised learning. (5 classes)  
Clustering. K-means. 
EM. Mixture of Gaussians. 
Factor analysis. 
PCA (Principal components analysis). ICA (Independent components 
analysis). 



Overview of this talk 

Two different topics, highlighting aspects that we 
know too little about. 
       

1)  Model (tool) selection issues: How would you 
choose the best clustering algorithm for your 
data? How should you set its parameters 
(e.g., the number of clusters)? 

2)  The computational complexity of clustering: 
The discrepancy between the theoretical 
hardness of clustering and practice. 

       



The first question we address: 

 
Given a clustering task, 
      How should a suitable 
clustering paradigm be chosen? 

 



Motivation 

 
Given a concrete clustering task, the user needs 
to choose a clustering algorithm, as well as its 
parameter values. 
 
Unlike other common computational tasks, 
different choices may lead to significantly 
different clustering outcomes. 



  An example 
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Compact partitioning into tw o strata
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Unsupervised learning



The agreed upon  
Clustering “Definition”  

“Partition the given data set so that  
1.  similar points reside in same cluster   
2.  non-similar points get separated.” 

Often, these two requirements cannot be 
simultaneously met. 
 
The above “definition” does not determine how to 
handle such conflicts. 



A very basic impossibility result 

Observation: Pick any values, α << β. Is there 
a clustering function that is guaranteed to cluster 
together every pair of closer than a points and 
separate every pair with larger than b distance?? 
NO!                                                                   
                                                                       β 
Proof                  α
……………………………………………..  

{ 



Balancing conflicting requirements 

One can think of any given clustering 
algorithm as a point in a simplex whose 
vertices are the different "desirable" 
requirements. 

Balance cluster sizes 

Join similar points 
Separate dissimilar points 

Robust to outliers 



Different clustering tools pick 
different tradeoffs - Examples 

l Single Linkage – focus on “similar points 
same cluster” 

l Max Linkage – focus on “dissimilar points 
should not share a cluster” 

Both are oblivious to balancing cluster 
population sizes. 
l K-Means – “balance clusters and avoid 

having dissimilar points together”. 
l Min-Sum – Different emphasis on balance. 



Different applications call for  
 different values of tradeoffs  

l  De-duplication of records in a data base --     
emphasis on separating dissimilar point. 

l  Clustering people for predicting viral spread (of 
disease or rumors) –  

    emphasis on clustering similar points together. 
 
l  Clustering neighborhoods to school districts –  
    need for balance between sizes of clusters. 



Some more practical examples 

“Binning” by Locality-Sensitive Hashing 
(LSH): 
When data sets are very large, clustering 
is used to save the need to compare all 
pairs of elements (for De-Duplication or for 
Nearest Neighbor search or for “Top-k” in 
query answering). 
Here, focus should be on “similar points 
same cluster” 



Choosing a clustering paradigm 
in practice 

How do users actually pick a tool for their 
data? 
 
Currently, in practice, this is done by most 
ad-hoc manner. 
 



Current practices 

In practice users pick a clustering method based on:  
 
“Easiness of use – no need to tune parameters”, 
 
 “Freely downloadable software”, 
 
 “It worked for my friend” (for a different problem …),  
 
“Runs fast”  
etc. 
 




 Some common fallacies 

“My algorithm outperforms all others” 
         “This medication is best, 
 regardless of what your sickness is!” 
(There can be no universally-best    
          clustering algorithm!) 
“Here’s an algorithm that can be 
implemented in linear time” 
         “Sick? Take this pill, it’s only $0.99” 
 
          



Some more common fallacies 

What about “check against inherent 
structure in the data”? 
Sure, if your data looks like a collection of 
well separated dense rounded clouds. 
What about experimental evidence? 
For every two reasonable clustering 
algorithms there are data sets in which 
one performs “better” than the other. 



From “Science” last fall 



 Need for Domain Specific Bias  

  
 
To turn clustering into a well-defined task, 
 one needs to add some bias, expressing 
some prior domain knowledge. 
 
 



 
Two approaches to the tool-selection challenge 

“Axiomatic” (property-based):  formulate 
properties of clustering functions that allow 
translating prior knowledge about a clustering 
task into guidance concerning the choice of 
suitable clustering functions. 

 
Interactive: Ask the user to provide partial 

information about the desired outcome on their 
given data interactively with the algorithm. 

 



The axiomatic approach:  
taxonomy of clustering paradigms 
l  The goal is to generate a variety of axioms (or properties) over a fixed 

framework, so that different clustering approaches could be classified by 
the different subsets of axioms they satisfy. 

Scale 
Invariance

Antichain
Richness

Local 
Consistency

Full 
Consistency

Richness

Single 
Linkage + + + + - 
Center 
Based + + + - + 
Sum of 
Distances + + + + - 
Spectral + + + + - 
Silly F + + - - + 

“Axioms” “Properties” 



Main challenge for the Axiomatic 
approach 

  How to come up with properties that 
make sense to a clustering “customer”. 
 
A language that bridges between 
algorithmic theory and practical 
applications. 



The interactive approach: 
Possible types of user input info 

•  Must-link/Can’t link pairs of instances. 
   (user driven, random, or active learner 
   queries) 
 
•  Merge/Split clusters on a proposed 

clustering. 

•  Sample clusterings of small input 
subsets. 



Semi-Supervised-Active-Clustering 

Recent work [Ashtiani, BD Kushagra ‘16] 
Consider algorithms that interact with a domain 
expert by actively querying “same-cluster/diff-
clusters” over pairs of data points. 

l  We show that access to few (O(k log n) )such 
query answers can turn an NP hard clustering 
problem to one solvable in linear time. 



Two new considerations 

l Computational complexity of clustering 
tasks. 

l Data niceness (“clusterability”) 
assumptions. 



A Clusterability Condition 

Given a data set (X, d) and parameter γ >0, 
 a clustering C=(C1, ….Ck) induced by centers 
(µ1..... µk) is γ- margin separable if, for any i and 
x in Ci , z not in Ci , γd(x, µi) < d(z, µi). 
 

•    A data set (X,d) is γ- margin nice for k-means 
if it has an optimal k-means clustering C that is 
γ- margin separable. 

 



A Phase-transition phenomenea 

Theorem [Ashtiani, BD Kushagra ’16]:  
•  There exists a polynomial time algorithms that, 

for every γ>2 finds an optimal k-means 
clustering for every data set that is γ- margin 
nice. 

•  For every γ< 2 the problem of finding an 
optimal k-means clustering for every data set 
that is γ- margin nice is NP hard. 

 
 



Our main result 

l  We design a probabilistic active semi-
supervised clustering algorithm, A(γ,k), such 
that for every γ>1 and every input data set 
(X,d) and a k-clustering C satisfying the γ-
margin condition,  

upon making O(k2log(k) + klog(n)) queries of 
a C-oracle A(γ,k) runs in time O(kn log(n)) 
and w.h.p. outputs the clustering C. 
 



Unusual conclusion 

Note that for every 1< γ<2 our algorithm 
demonstrates that access to a small 
number of  Same-cluster/Diff-cluster 
active query answers, 
   turns an NP-hard clustering problem 
into one solved in polytime.  



Basic algorithm’s idea 

l Step1 – sample enough points from X to 
get “many” in one cluster. 

l Step 2 – estimate the center of that 
cluster. 

l Step 3 – binary search the “radius” of 
that cluster. 

l Step 4 – delete all members of X in ball. 
l Repeat k-1 times. 



Part 2: Computational complexity 

 
Is it the case that  

“clustering is hard only when 
it does not matter”? 



A note on Worst-Case Complexity 

Worst case complexity is by far the most 
cited, most researched, best understood, 
approach to analyzing the difficulty of 
computational tasks.  
 
However, it’s focus on hard, possibly rare, 
instances, makes it excessively pessimistic  
 



Theoretically hard 
Practically feasible 

l   Propositional Satisfiability   (SAT) 

l Linear Programming 

l Neural Network Training 

l K-means clustering 



Focus on clustering 
The most common clustering objectives  
are NP-hard to optimize (e.g., k-means). 
 
Does this hardness still apply when we 
 restrict our attention to “clusterable” inputs? 
 
Is it the case that “Clustering is Difficult only 
when it Does Not Matter” (CDNM thesis)? 



Outline of this part 

1)  I will start by listing requirements on notions of 
clusterability aiming to sustain the CDNM thesis. 

2)  List various clusterability notions that have been 
recently proposed in this context. 

3)  Examine those notions in view of the above 
requirements. 

4)  Conclusions, open problems and directions for 
further research. 



Desiderata for  
notion of “Clusterable” inputs 
1.  It should be reasonable to assume that  
    most (or at least a significant proportion)  
    of the inputs one may care about in practice 
    meet the clusterability requirement.  

l  While there is no way to guarantee that the property will  
     be satisfied by future meaningful inputs, it can serve to 
     eliminate too restrictive notions. 
l  May be checked against common generative models. 



Desiderata for  
notion of “Clusterable” inputs 

2. There should be efficient algorithms that 
are guaranteed to find a good clustering 
for any “clusterable” input. 
 



Further requirements  

3. There should be an efficient algorithm 
that, given an input, figures out whether the 
input is “clusterable” or not. 
 
Note that in contrast to other computational 
tasks, checking if a given clustering is 
indeed optimal is generally not feasible. 
  
 



Last requirement 

4. Some commonly used practical 
algorithm can be guaranteed to perform 
well (i.e., run in polytime and find close-to-
optimal solutions) on all clusterable 
instances. 
 
This requirement is important when our 
goal is to understand what we witness in 
practice. 



The main open question 

Can we come up with a notion of clusterability 
that meets the above requirements (or even 
just the first two)? 



Recently proposed clusterability 
notions 

1.  Perturbation Robustness(PR) – data set 
I=(X,d) is robust if small perturbations of I 
do not result in changes to its optimal 
clustering. 

1a. Additive PR [Ackerman-BD 2009]  - the 
perturbation may move every point in X by some 
bounded distance. 
1b. Multiplicative PR [Bilu-Lineal 2010]   - the 
perturbation may change every pairwise point 
distance my a bounded multiplicative factor. 



2. Significant loss when reducing 
the number of clusters 

2a. ε -Separatedness [Ostrovsky et al. 2012]: 
an input data set (X, d) to be ε-separated for k 
if the k-means cost of the optimal k-clustering 
of (X, d) is less then ε2 times the cost of its 
optimal (k − 1)-clustering. 
 



More notion of “well behaved” 
clustering inputs 
Uniqueness of optimum [Balcan et al. 2013]: 
(X,d) is (c, ε)-approximation- stable if every 
clustering C of X whose objective cost over (X, 
d) is within a factor c of that the optimal 
clustering, is ε-close to OPT(X) w.r.t. some 
natural notion of between-clusterings distance.  



More notion of “well behaved” 
clustering inputs 
α-center stability: [Awasthi et al. 2012]: 
instance (X,d) is α-center stable (with 
respect to some center based clustering 
objective) if for any optimal clustering with 
centers c1, . . . ck, for every i ≤ k and every  
x∈ Ci, and every j ≠ i, αd(x,ci) < d(x,cj).  
Namely, points are closer to their own 
cluster center by a factor α more than to any 
other cluster center.  



How do these notions fare w.r.t. 
the list of desirable properties? 

1)  All of these notions imply the existence 
of efficient clustering algorithms 
(weaker efficiency for APR). 

2)  None of them can be efficiently verified. 
3)  Only the ε -Separatedness gets 

efficiency for a (semi-) practical 
algorithms. 

4)  However, all (except maybe APR) seem 
to fail the requirement of being realistic. 



What do I mean by “not a realistic 
clusterability requirement”?  

l  ε -Separatedness [Ostrovsky et al. 2012] 
Implies polytime clustering only when the 
minimal between-cluster-centers distance 
is > 200 times the average distance from a 
point to its cluster center. 



What do I mean by “not a realistic 
clusterability requirement”?  

For Uniqueness of optimum [Balcan et 
al. 2013]: The parameter values sufficient 
for  showing efficiency of clustering imply 
that the distance of a point to any “foreign” 
cluster center is larger that its distance to 
its own cluster center by at least 20 times 
the average point-to-its-cluster-center 
distance. 



Provable reason for concern 

l The proofs of efficiency for all of the 
notions (except the APR), rely on showing 
that they imply α-center stability for some 
large α. 

l However, [Ben-David, Reyzin 2014] show 
that for any α<2, solving α-center stable 
inputs is NP-hard. 

l 2-center stable data sets are still 
“unrealistically nice” 



The bottom line 

The proposed notions provably detects 
easy-to-cluster instances,  
but those are not the “realistic” inputs. 
 
The current approach to define input 
niceness that will render efficiency w.r.t. 
the number of clusters, k, seems to be 
inherently too restrictive. 



Alternative directions (1) 

l All the current approaches that try to 
tackle the hardness of finding a minimal 
cost (a.k.a. optimal) clustering. 

l  Is that really required in practice? 
 
    Definitely not! 



Alternative directions (2) 

Should one really care about an exact 
number of clusters when that number is 
high? 
Consider clustering for record de-duplication 
in data repositories.  
 
The number of resulting clusters is huge, but 
it is not set in advance. 
Also, not captured by common regularization 



1.  Can similar approaches be applied to 
other worst-case hard problems that are 
being routinely solved in practice? 

2.  In particular, can we find a notion of 
“input niceness” that will explain the 
practice of Propositional SAT problem? 

3.  Will the new analyses lead to new useful 
    algorithms? 



Thanks for listening 
             J  


