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Error sources

measure = value± errstat ± errsyst

Statistical error

∙ lack of training data
∙ wrong hyper-parameter settings
∙ wrong choice of algorithm
∙ etc

Systematic error

∙ measurement imperfections
∙ simulation limitations
∙ theoretical knowledge lacks 1



The Nail

∙ H → ττ simulation (HiggsML challenge data, Geant4)
∙ Skewing : rescaling τ energy (+[1%, 10%])
∙ [Adam-Bourdarios et al., 2014] & [Baldi et al., 2015]
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Nail details

Physicist : We want to count higgs boson candidates and take into
account systematics.

ML : Great ! I’d love to have an objective function ...

Physicist : minimize

σµ

µ
=

√(√
s0 + b0
s0

)2

+

(
(sz − s0) + (bz − b0)

s0

)2

∙ s, selected signals (True posivites)
∙ b, selected backgrounds (False posivites)
∙ ∗z, on the skewed test set
∙ ∗0, on the nominal test set
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Available Hammers

Deep learning tools

∙ Data augmentation : train on both simulation and real data (or
many simulations)

∙ Adversarial methods
∙ GAN [Goodfellow et al., 2014] : Generate samples that are
indistinguishable from real data

∙ DAN [Ganin et al., 2015] : Find a common space for both
simulation and real data

∙ PAN [Louppe et al., 2016] : Correct the model to be pivotal
∙ Tangent Propagation [Simard et al., 1991] [Rifai et al., 2011] :
Regularize training using known invariant
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Available Hammers

What I tried

∙ Data augmentation : train on both simulation and real data (or
many simulations)

∙ Adversarial methods
∙ GAN [Goodfellow et al., 2014] : Generate samples that are
indistinguishable from real data

∙ DAN [Ganin et al., 2015] : Find a common space for both
simulation and real data

∙ PAN [Louppe et al., 2016] : Correct the model to be pivotal

∙ Tangent Propagation [Simard et al., 1991] [Rifai et al., 2011] :
Regularize training using known invariant

4



Fast Presentation : Tangent Propagation
Key Ideas
∙ Regularize the derivative of the model according to the transformation.

loss = Estandard + λ
∑

x∈Data

∣∣∣∣∂Gw(s(x, α))
∂α

∣∣∣∣2
α=0

∙ Compute this derivative with a forward propagation through a ”linearized”
network.

∂Gw(s(x, α))
∂α

∣∣∣∣
α=0

= ∇xGw(x).
∂s(x, α)

∂α

∣∣∣∣
α=0
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Jacobian Net

Tangent Propagation : standard network + ”linearized” model insertion
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Systematics dominate
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Adversarial training wins this nail
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Discussion

Results

∙ Adversarial is hard to train but worth it.
∙ Boosting is still is the game (if high level features).
∙ Not giving up on Tangent Propagation.

Future : What kind of hammer for what kind of nail

∙ Build a zoo with data stained with systematics
∙ Try GANs, DANs
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Questions ?
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Backup 1%
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Backup 5%
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Backup 8%
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ML resistance

For the ML community not focusing on optimizing
classification/regression error is counter intuitive.

Magic words :

”Non additive (function) error”
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