Classification Performance Measures and Weakly Supervised Learning

Clay Scott

Electrical and Computer Engineering & Statistics
University of Michigan

Outline

Part 1: Performance measures for classification

Part 2: Weakly supervised learning

Classification

Many nonparametric methods: Nearest neighbors, decision trees, support vector machines, neural networks, etc.

Probability of Error

- $X \in \mathbb{R}^d$ = pattern of interest
- $Y \in \{0, 1\} = label$
- Classifier:

$$f: \mathbb{R}^d \to \{0, 1\}$$

 $f(x) = 1_{\{h(x) > 0\}}$

• Probability of error

$$R(f) = P(f(X) \neq Y)$$

Cost-Sensitive Risk

• Misclassification rate can be expressed

$$R(f) = P(Y = 1, f(X) = 0) + P(Y = 0, f(X) = 1)$$
$$= \pi_1 R_1(f) + \pi_0 R_0(f)$$

where

$$\pi_0 = P(Y = 0)$$
 $\pi_1 = P(Y = 1)$
 $R_0(f) = P(f(X) = 1 | Y = 0)$
 $R_1(f) = P(f(X) = 0 | Y = 1)$

• For $\rho \in (0,1)$, define the **cost-sensitive risk**

$$R_{\rho}(f) := \rho \pi_0 R_0(f) + (1 - \rho) \pi_1 R_1(f)$$

Optimal Classifiers

The optimal classifier for any cost-sensitive risk is a **like-lihood ratio test**

$$\frac{p_1(x)}{p_0(x)} \geqslant \lambda$$

for some $\lambda > 0$, where

 $p_1(x) = \text{probability density of } X \text{ given } Y = 1$

 $p_0(x) = \text{probability density of } X \text{ given } Y = 0$

Neyman-Pearson

• False positive/negative rates:

$$R_0(f) = P(f(X) = 1 | Y = 0)$$

 $R_1(f) = P(f(X) = 0 | Y = 1)$

• Given $\alpha \in (0,1)$, the **Neyman-Pearson** classifier solves

min
$$R_1(f)$$

s.t. $R_0(f) \le \alpha$

- Solution also a likelihood ratio test
- Advantages:
 - Class proportions in test and training data need not be the same
 - Imbalanced data

Other Frequentist Criteria

• Min-max

$$R_{\text{mm}}(f) = \max\{R_0(f), R_1(f)\}$$

• Balanced error

$$R_{\text{bal}}(f) = \frac{R_0(f) + R_1(f)}{2}$$

• Weighted error

$$\rho R_0(f) + (1 - \rho)R_1(f)$$

• Optimal classifiers are again likelihood ratio tests

Area Under ROC Curve

• Again optimized by the family of likelihood ratio tests

Algorithms

• Since all criteria are solved by likelihood ratio tests, it suffices to minimize the cost-sensitive risk $R_{\rho}(f)$, where ρ is chosen according to the desired criterion.

• Therefore, can apply existing algorithms, which can easily be adapted to minimize the cost-sensitive (empirical) risk

pirical) risk

Cost-Insensitive Learning

Given training data $(x_1, y_1), \ldots, (x_n, y_n), y_i \in \{-1, 1\}$, solve

$$\widehat{h} = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} \phi(y_i h(x_i))$$

$$f(x) = sign(h(x))$$

where

- \bullet \mathcal{H} is a function class
- ϕ is a loss

Cost-Sensitive Learning

$$\widehat{h}_{\rho} = \underset{h \in \mathcal{H}}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^{n} \left[(1 - \rho) 1_{\{y_i = 1\}} \phi(h(x_i)) + \rho 1_{\{y_i = -1\}} \phi(-h(x_i)) \right]$$

Summary of Part 1

- Frequentist performance measures are not affected when the training class proportions and testing class proportions differ (the simplest form of domain adaptation)
- Frequentist performance measures can be optimized by cost-sensitive learning, although ρ becomes an additional tuning parameter
- For neural networks, how does feature representation depend on performance measure?

Outline

Part 1: Performance measures for classification

Part 2: Weakly supervised learning

Weakly Supervised Learning

Definition: Weakly supervised learning (WSL) = supervised learning where some or all labels are corrupted, contaminated, or missing

Important theme: Many WSL problems are easier to solve for certain performance measures

Nuclear Nonproliferation

- Radioactive sources are characterized by distribution of neutron energies
- Organic scintillation detectors: prominent technology for neutron detection

Organic Scintillation Detector

- Detects both neutrons and gamma rays
- Need to classify neutrons and gamma rays

Nuclear Particle Classification

- $X \in \mathbb{R}^d$, d = signal length
- Training data:

$$X_1, \ldots, X_m \stackrel{iid}{\sim} P_0$$
 (from gamma ray source, e.g. Na-22) $X_{m+1}, \ldots, X_{m+n} \stackrel{iid}{\sim} P_1$ (from neutron source, e.g. Cf-252)

• $P_0, P_1 =$ class-conditional distributions; don't want to model

Reality: No Pure Neutron Sources

• Contamination model for training data:

$$X_1, \dots, X_m \stackrel{iid}{\sim} P_0$$

$$X_{m+1}, \dots, X_{m+n} \stackrel{iid}{\sim} \tilde{P}_1 = (1-\pi)P_1 + \pi P_0$$

- π unknown
- P_0 , P_1 may have overlapping supports (nonseparable problem)
- Problem known as "learning with negative and unlabeled examples" or "classification with one-sided label noise"

Training On Contaminated Data

• Train a binary classifer on

$$X_1, \dots, X_m \stackrel{iid}{\sim} P_0$$

$$X_{m+1}, \dots, X_{m+n} \stackrel{iid}{\sim} \tilde{P}_1 = (1-\pi)P_1 + \pi P_0$$

• "Contaminated" likelihood ratio

$$\frac{\tilde{p}_1(x)}{p_0(x)} = \frac{(1-\pi)p_1(x) + \pi p_0(x)}{p_0(x)} \Big|_{0.8}$$

$$= (1-\pi)\frac{p_1(x)}{p_0(x)} + \pi \Big|_{0.4}$$

- Key insights:
 - True and contaminated LRs have same ROC
 - For Neyman-Pearson criterion, can set threshold because class 0 is uncontaminated

More Reality: Both Classes Contaminated

• Contaminated training data:

$$X_1, \dots, X_m \stackrel{iid}{\sim} \tilde{P}_0 = (1 - \pi_0)P_0 + \pi_0 P_1$$

 $X_{m+1}, \dots, X_{m+n} \stackrel{iid}{\sim} \tilde{P}_1 = (1 - \pi_1)P_1 + \pi_1 P_0$

- π_0, π_1 unknown
- "Classification with (two-sided) label noise"
- Label noise is **in addition to** the usual noise that is present in binary classification (i.e., y|x is random)
- Random label noise, as opposed to adversarial, or feature-dependent

Understanding Label Noise

- Assume P_0, P_1 have densities $p_0(x), p_1(x)$
- Then \tilde{P}_0, \tilde{P}_1 have densities

$$\tilde{p}_0(x) = (1 - \pi_0)p_0(x) + \pi_0 p_1(x)$$

$$\tilde{p}_1(x) = (1 - \pi_1)p_1(x) + \pi_1 p_0(x)$$

• Simple algebra:

$$\frac{p_1(x)}{p_0(x)} > \gamma \iff \frac{\tilde{p}_1(x)}{\tilde{p}_0(x)} > \lambda,$$

where

$$\lambda = \frac{\pi_1 + \gamma(1 - \pi_1)}{1 - \pi_0 + \gamma\pi_0}.$$

• Balanced error immune to label noise (Menon et al., 2015)

Cost-Sensitive Approach

- If π_0 and π_1 are known (or can be estimated), can optimize a performance measure of interest by performing cost-sensitive classification with an appropriate cost parameter.
- For example, if the performance measure of interest is the probability of error, take

$$\rho = \frac{\frac{1}{2} - \pi_0}{1 - \pi_0 - \pi_1}$$

Feature-Dependent Label Noise

- Unobserved: $(X_1, Y_1), \ldots, (X_n, Y_n)$
- Observed: $(X_1, \tilde{Y}_1), \ldots, (X_n, \tilde{Y}_n)$. Y_i flips with probability depending on X_i
- Under a certain condition, the contaminated and true likelihood ratios are monontonically equivalent
- That assumptions essentially states that the more a 0 looks like a 1, the more probable a label of 0 is to flip to a 1 (and vice versa)
- The following criterion is immune to feature-dependent label noise:

min
$$R_1(f)$$

s.t. $P(f(X) = 1) \le \alpha$

• Constraint on the "discovery rate"

Learning From Label Proportions

- $(B_i, \pi_i), i = 1, 2, \dots$
- B_i = collection of feature vectors, iid from a mixture of P_0 and P_1
- π_i = proportion of class 1 in B_i
- Recent applications to HEP: Dery, Nachman, Rubbo, Schwartzman (1702:00414), Cohen, Freytsis, Ostdiek (1706:09451), classification of jets

LLP as Classification with Noisy Labels

- Consider two bags
- Suppose:

Bag 1:
$$x_1, \dots, x_m \sim (1 - \pi_1)P_0 + \pi_1 P_1, \, \pi_1 < \frac{1}{2}$$

Bag 2: $x_{m+1}, \dots, x_{m+n} \sim (1 - \pi_2)P_0 + \pi_2 P_1, \, \pi_2 > \frac{1}{2}$

• This is a classification with label noise problem. Since the label proportions are given, can define appropriate cost-sensitive loss

Novelty Detection

Typical approach: estimate a **level set** of the background density

$$\lambda \geqslant p_0(x)$$

Underlying Classification Problem

Optimal classifier:

$$\lambda \geqslant \frac{p_1(x)}{p_0(x)}$$

Problem with Level Set Approach

The more p_1 overlaps p_0 , the bigger the problem

Semi-Supervised Novelty Detection

Claim: We can achieve

Benchmark Data

Estimating Performance

- Even if we can find an optimal classifier in a WSL problem by choosing an appropriate performance measure, we can't necessarily estimate its performance.
- Example: Learning from negative and unlabeled data

$$X_1, \dots, X_m \stackrel{iid}{\sim} P_0$$

$$X_{m+1}, \dots, X_{m+n} \stackrel{iid}{\sim} \tilde{P}_1 = (1-\pi)P_1 + \pi P_0$$

• Need to know π to estimate $R_1(f)$

Mixture Proportion Estimation

• Consider

$$Z_1, \dots, Z_m \stackrel{iid}{\sim} H$$

$$Z_{m+1}, \dots, Z_{m+n} \stackrel{iid}{\sim} F = (1-\kappa)G + \kappa H$$

- Need consistent estimate of κ
- Note: κ not identifiable in general

Mixture Proportion Estimation

• Given two distributions F, H, define

$$\kappa^*(F|H) = \max\{\alpha \in [0,1] : \exists G' \text{ s.t. } F = (1-\alpha)G' + \alpha H\}$$

- κ^* can be estimated stay tuned
- When is $\kappa = \kappa^*(F|H)$?

Identifiability Condition

• If

$$F = (1 - \kappa)G + \kappa H$$

then

$$\kappa = \kappa^*(F | H) \Longleftrightarrow \kappa^*(G | H) = 0$$

• Apply to LNUE

$$X_1, \dots, X_m \stackrel{iid}{\sim} P_0$$

$$X_{m+1}, \dots, X_{m+n} \stackrel{iid}{\sim} \tilde{P}_1 = (1-\pi)P_1 + \pi P_0$$

Need

$$\kappa^*(P_1 | P_0) = 0$$

In words: Can't write P_1 as a (nontrivial) mixture of P_0 and some other distribution

Label Noise Proportion Estimation

• Recall contamination model:

$$X_1, \dots, X_m \stackrel{iid}{\sim} \tilde{P}_0 = (1 - \pi_0)P_0 + \pi_0 P_1$$

 $X_{m+1}, \dots, X_{m+n} \stackrel{iid}{\sim} \tilde{P}_1 = (1 - \pi_1)P_1 + \pi_1 P_0$

• **Proposition:** If $\pi_0 + \pi_1 < 1$ and $P_0 \neq P_1$, then

$$\tilde{P}_0 = (1 - \tilde{\pi}_0) P_0 + \tilde{\pi}_0 \tilde{P}_1
\tilde{P}_1 = (1 - \tilde{\pi}_1) P_1 + \tilde{\pi}_1 \tilde{P}_0$$

where

$$\tilde{\pi}_0 = \frac{\pi_0}{1 - \pi_1}, \quad \tilde{\pi}_1 = \frac{\pi_1}{1 - \pi_0}$$

MPE for Label Noise

• Modified contamination model

$$X_1, \dots, X_m \stackrel{iid}{\sim} \tilde{P}_0 = (1 - \tilde{\pi}_0) P_0 + \tilde{\pi}_0 \tilde{P}_1$$
$$X_{m+1}, \dots, X_{m+n} \stackrel{iid}{\sim} \tilde{P}_1 = (1 - \tilde{\pi}_1) P_1 + \tilde{\pi}_1 \tilde{P}_0$$

- Need consistent estimates of $\tilde{\pi}_0$, $\tilde{\pi}_1 \longrightarrow \text{MPE}$
- Identifiability: Need

$$\kappa^*(P_0 | \tilde{P}_1) = 0 \text{ and } \kappa^*(P_1 | \tilde{P}_0) = 0$$

or equivalently (it can be shown)

$$\kappa^*(P_0 | P_1) = 0 \text{ and } \kappa^*(P_1 | P_0) = 0$$

Effect on Performance Estimate

Approaches to Mixture Prop. Est.

- Plug-in
- ROC slope
- Class probability estimation
- Kernel mean embedding

MPE: Density Ratio Formulation

• Key observation: For any F, H

$$\kappa^*(F | H) = \inf_{A:H(A)>0} \frac{F(A)}{H(A)}$$

• Proof: κ^* is the largest κ such that

$$G = \frac{F - \kappa H}{1 - \kappa}$$

is a distribution.

• Similarly, if F and H have densities f and h, then

$$\kappa^*(F \mid H) = \underset{x:h(x)>0}{\text{ess inf}} \frac{f(x)}{h(x)}$$

• Universally consistent estimator established by Blanchard et al. (2010)

ROC Method

• Rewrite previous identity as (substituting $A \to A^c$)

$$\kappa^*(F \mid H) = \inf_{A:H(A)<1} \frac{1 - F(A)}{1 - H(A)}$$

• Slope of ROC at its right endpoint

Class Probability Estimation

• Assume joint distribution on (X,Y), Y=0,1, where

$$X|Y = 1 \sim F$$
$$X|Y = 0 \sim H$$

• Prior / posterior class probabilities

$$\theta := \Pr(Y = 1)$$
$$\eta(x) := \Pr(Y = 1 \mid X = x)$$

• By a simple application of Bayes rule,

$$\eta_{\max} := \sup_{x} \eta(x) = \frac{1}{1 + \frac{1 - \theta}{\theta} \kappa^*(F \mid H)}$$

• Menon et al. (2015), Liu and Tao (2016).

Additional WSL Problems

- Multiclass extensions of the preceding
- Classification with reject option
- Learning with partial labels
- Multiple instance learning
- Semi-supervised learning (reduces to classification with label noise under co-training assumption)

• . . .

Summary of Part 2

- Some performance measures are ideally suited to certain WSL problems
- To actually estimate the performance can require additional work
- Are some performance measures well-suited for more general types of domain adaptation?
- Bottom Line: For many WSL problems, we can do as well as in the fully supervised setting

Some Related Work

LNUE: Liu et al. (2002), Denis et al. (2005), Elkan and Noto (2008), Ward et al. (2009), Smola et al. (2009), Goernitz et al. (2013)

MPE: du Plessis and Sugiyama (2013, 2015), Jain et al. (2016)

Label noise: Long and Servido (2010), Natarajan et al. (2013), Menon et al. (2015), Liu and Tao (2016), van Rooyen et al. (2015), Patrini et al. (2016)

Multiple hypothesis testing: Genovese and Wasserman (2004)

Feature-dependent label noise: Urner, Ben-David and Shamir (2012)

Multiple instance learning: Sabato and Tishby (2012)

Learning from label proportions: Patrini et al. (2014)

Some of My Papers

Neyman-Pearson Classification: Trans. IT 2006

Semi-supervised novelty detection: JMLR 2010

Cost-sensitive loss functions: Electronic J. Statistics 2012

Classification with Label Noise: COLT 2013, AISTATS 2014, AISTATS 2015, Electronic J. Statistics 2016

Mixture proportion estimation: ICML 2016

Collaborators

- Gilles Blanchard
- Gregory Handy, Tyler Sanderson
- Marek Flaska, Sara Pozzi
- Harish Ramaswamy, Ambuj Tewari

Supported in part by NSF