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Classification
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Many nonparametric methods:
Nearest neighbors, decision trees,
support vector machines, neural
networks, etc.
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Probability of Error

e X € RY = pattern of interest
e Y c{0,1} = label
e (lassifier:

f:R* - {0,1}
f(x) = Lip@)>0

e Probability of error

R(f)=P(f(X)#Y)
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Cost-Sensitive Risk

e Misclassification rate can be expressed

R(f)=P(Y =1, f(X) =0)+ P(Y =0, f(X)
= 7T1R1(f) + 7TOR0(f)

where |
7T0:P(Y:0) sl
7T1=P(Y=1) ol
Ro(f) = PUF(X) = 1Y =0) |
Bai(f)=P(f(X)=0]Y =1)

e For p € (0,1), define the cost-sensitive risk

R,(f) == pmoRo(f) + (1 — p)miR1(f)
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Optimal Classifiers

The optimal classifier for any cost-sensitive risk is a like-
lihood ratio test
1(2)

o(z)

i~

Z A

=

for some A > 0, where

p1(x) = probability density of X given Y =1

po(z) = probability density of X given Y =0
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Neyman-Pearson

e False positive/negative rates:

Ro(f) = P(f(X) =1]Y =0)
Ri(f) = P(f(X)=0]Y =1)

e Given « € (0,1), the Neyman-Pearson s

classifier solves

min R (f)
s.t. Ro(f) <a

e Solution also a likelihood ratio test

e Advantages:

— C(Class proportions in test and training data need not be

the same

— Imbalanced data
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Other Frequentist Criteria
e Min-max

Rmm (f) = max{Ro(f), R1(f)}

e Balanced error

Ry 1(f) = Ro(f) —; Ri(f)

e Weighted error
pRo(f) + (1 — p)Ru(f)

e Optimal classifiers are again likelihood ratio tests



Area Under ROC Curve

True positive rate
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False positive rate

e Again optimized by the family of likelihood ratio
tests



Algorithms

e Since all criteria are solved by likelihood ratio tests,
it suffices to minimize the cost-sensitive risk R,(f),
where p is chosen according to the desired criterion.

e Therefore, can apply existing algorithms, which can
easily be adapted to minimize the cost-sensitive (em-

pirical) risk 1
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Cost-Insensitive Learning

Given training data (xl, yl), ceey (xn, yn)v
y; € {—1,1}, solve

h—argmm—qu (y:h(x;))

heH N

—> f(z) = sign(h(z))

where

e 7 is a function class

® ¢ is a loss

5p T T

¢ 5 ~_ hinge
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Cost-Sensitive Learning
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Summary of Part 1

e Frequentist performance measures are not affected
when the training class proportions and testing class
proportions differ (the simplest form of domain adap-
tation)

e Frequentist performance measures can be optimized
by cost-sensitive learning, although p becomes an ad-
ditional tuning parameter

e For neural networks, how does feature representation
depend on performance measure?
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Weakly Supervised Learning

Definition: Weakly supervised learning (WSL) = supervised
learning where some or all labels are corrupted, contaminated, or

missing
Weakly supervised
[ L
Fully supervised Unsupervised

Important theme: Many WSL problems are easier to solve for
certain performance measures



Nuclear Nonproliferation

Radioactive sources are
characterized by distribution of
neutron energies

Organic scintillation detectors:

prominent technology for
neutron detection



Energy

Organic Scintillation Detector
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Detects both neutrons
and gamma rays

Need to classify neutrons
and gamma rays



Nuclear Particle Classification

e X € R? d = signal length

e Training data:

X1, Xm g Py (from gamma ray source, e.g. Na-22)
Xmatlyeeos Xman i P;  (from neutron source, e.g. Cf-252)

e P, P, = class-conditional distributions; don’t want to model



Reality: No Pure Neutron Sources

e Contamination model for training data:

1id
Xi,.... X, % Py

1id £

Xm—|—17---7Xm—|—n ~ P1 == (1 —7T)P1 +7TPO

e 7 unknown
e Py, P, may have overlapping supports (nonseparable problem)

e Problem known as “learning with negative and unlabeled examples”
or “classification with one-sided label noise”



Training On Contaminated Data

e Train a binary classifer on

d
Xi,..., X0 %P,

Xmtt1s-- s Xmin WP = (1 —=m)P +mh

e “Contaminated” likelihood ratio

pi(z) (A —mpi(x) +7po(z)

pO(aj) B pO(ZU) 08

P1 (SL‘) 06

=(1l—-7 + |

N

¢ Key insights: o2

— True and contaminated LRs have same ROC ~°~ *° ** *° *°

— For Neyman-Pearson criterion, can set threshold because class 0
is uncontaminated



More Reality: Both Classes Contaminated

e Gammas and neutrons from background radiation &

e Contaminated training data:

X17'°°7Xm;VPO:(l_WO)PO_l_ﬂ-OPl

1id
Xm—l—ly---;Xm—I-n ~ P1 — (1 —7T1)P1 —|—7T1P0

e Ty, 71 unknown
e “Classification with (two-sided) label noise”

e Label noise is in addition to the usual noise that is present in binary
classification (i.e., y|x is random)

e Random label noise, as opposed to adversarial, or feature-dependent



Understanding Label Noise

e Assume Pj, P; have densities pg(x), p1(z)

e Then Py, P; have densities

~

po(z) = (1 — mo)po(r) + mop1(x)
p1(z) = (1 — m)p1(x) + mipo(x)

e Simple algebra: 1
T p1(x _
291()>7 __ Zzl()>)\7 %0.8
po(x) Po(x) O
2 os}
where =
S 04
)\:7Tl+7(1_7Tl) ©
1 —m + o = 02
e Balanced error immune to label 0

0 02 04 06 08 1
noise (Menon et al., 2015) False positive rate



Cost-Sensitive Approach

e If my and 7 are known (or can be estimated), can optimize a perfor-
mance measure of interest by performing cost-sensitive classification
with an appropriate cost parameter.

e For example, if the performance measure of interest is the probability
of error, take




Feature-Dependent Label Noise

Unobserved: (X1,Y1),...,(Xn, Yn)

Observed: (X1,Y7),...,(X,,Y,). Y; flips with prob-
ability depending on X

Under a certain condition, the contaminated and true
likelihood ratios are monontonically equivalent

That assumptions essentially states that the more a
0 looks like a 1, the more probable a label of 0 is to
flip to a 1 (and vice versa)

The following criterion is immune to feature-dependent
label noise:

min Ry(f)
st. P(f(X)=1)<a

Constraint on the “discovery rate”



Learning From Label Proportions
o (Bi,ﬂ'i), 1= 1,2,...

e B, = collection of feature vectors, iid from a mixture
of P() and P1

e 7; = proportion of class 1 in B;

e Recent applications to HEP: Dery, Nachman, Rubbo,
Schwartzman (1702:00414), Cohen, Freytsis, Ostdiek
(1706:09451), classification of jets



LLP as Classification with Noisy Labels

e Consider two bags

e Suppose:
1
Bag 1: T1,. Ty ~(1=m)Py+m P, m < 5
1
Bag 2: Tmi1, s Tman ~ (1 —m) Py + mo Py, mgy > 3

e This is a classification with label noise problem. Since the la-
bel proportions are given, can define appropriate cost-sensitive
loss



Novelty Detection
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Background data only

Typical approach: estimate a level
set of the background density

Nonparametric methods:
thresholded KDE, one-class SVM

A 2 po(x)




Underlying Classification Problem
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Problem with Level Set Approach
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The more p, overlaps p,, the bigger the problem



emi-Supervised Novelty Detection

Suppose you observe

| ) and | - ’
Background data Unlabeled test data

Claim: We can achieve




Benchmark Data

splice (m = 0.5)
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Estimating Performance

e Even if we can find an optimal classifier in a WSL
problem by choosing an appropriate performance mea-
sure, we can’t necessarily estimate its performance.

e Example: Learning from negative and unlabeled data

11d
Xy,..., X, %P,

Xty eos Xy~ Pr = (1—m)P, + 7P I iiﬂ’ -

e Need to know 7 to estimate Ry (f)




Mixture Proportion Estimation

e Consider

7, ...

Zm_+_]_, o« o

7ZmNH

11d

Iman ~ F=(1—-kr)G+rH

e Need consistent estimate of K

e Note: k not identifiable in general
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Mixture Proportion Estimation

1

H
0.5}
M
0 i I L L

-3 -2 -1 0 1 2 3

e Given two distributions F, H, define

k*(F|H) = max{a € [0,1] : 3G" s.t. F = (1 —a)G' + aH}

e rk* can be estimated — stay tuned

e When is k = x*(F|H)?



Identifiability Condition

o If
F=(1-k)G+kH

then

k=r"(F|H)<=|k"(G|H)=0

e Apply to LNUE
11d
X1, ... X < Py
Xm_|_1,...,Xm_|_n%lP1 :(1—7T)P1—|—7TP0

e Need
KZ*(Pl |P0) = O

In words: Can’t write P; as a (nontrivial) mixture of
Py and some other distribution



Label Noise Proportion Estimation

e Recall contaminaton model:
iid =~
e Xi,...,.X,m ~ Py
iid =~
&. Xty Xongn & P

e Proposition: If 7y + 7 <1 and Py # P;, then

(1 —mo)Po + mo Py

(1 —7T1)P1 —|—7T1P0

Py = (1 — 7) Py + 7o Py
P, =(1—#)P, + 7Py

where

o 1

Ty =
1—71'1’

T =
1—7‘(’0




MPE for Label Noise

e Modified contamination model

X1, X ™ By = (1— 7o) Py + o Py
iid 5 .~
X1y s Xmgn ~ P =1 —71)P1 + 71 Fo

e Need consistent estimates of 7y, 71 =2 MPE

e Identifiability: Need
R*(PO ‘ Pl) = (0 and H*(Pl ‘ P()) =0
or equivalently (it can be shown)

R*(Po‘Pl) = (0 and H*(Pl‘P()) =0



Effect on Performance Estimate
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Approaches to Mixture Prop. Est.

e Plug-in
e ROC slope
e Class probability estimation

e Kernel mean embedding



MPE: Density Ratio Formulation

e Key observation: For any F, H

* . F
WEH) = b T3

e Proof: k* is the largest x such that

F—rxkH
G=—""
1—r
is a distribution. , , . : . .
e Similarly, if F and H have | A/\\
densities f and h, then % 2 1 0 1 2

: e @)
RIETH) = essinf 30

e Universally consistent estimator established by Blanchard et al. (2010)



ROC Method

e Rewrite previous identity as (substi-
tuting A — A°)

| 1 — F(A)
“(F|H) =
W) = T H @A)

e Slope of ROC at its right endpoint




Class Probability Estimation
e Assume joint distribution on (X,Y), Y = 0,1, where

X[Y=1~F
XY =0~H

e Prior / posterior class probabilities

e By a simple application of Bayes rule,

1
max .= supn(x) =
7 1P 7() 1+ 94(F| H)

e Menon et al. (2015), Liu and Tao (2016).



Additional WSL Problems

e Multiclass extensions of the preceding
e (lassification with reject option

e Learning with partial labels

e Multiple instance learning

e Semi-supervised learning (reduces to classification with
label noise under co-training assumption)



Summary of Part 2

Some performance measures are ideally suited to cer-
tain WSL problems

To actually estimate the performance can require ad-
ditional work

Are some performance measures well-suited for more
general types of domain adaptation?

Bottom Line: For many WSL problems, we can do
as well as in the fully supervised setting
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