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Plan for the next hour 

Goal of talk is to try to explain, mainly to the non-physics 
people, the statistical procedures usually used in HEP. 

Will focus on statistical tests used e.g. for discovering a 
new signal process, and how this relates to event classification. 
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Theory ↔ Statistics ↔ Experiment 

+ simulation 
of detector 
and cuts 

Theory (model, hypothesis): Experiment: 

+ data 
selection 
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Goals of statistical data analysis in HEP 
Start with probabilistic model for data, usually with parameters. 

Estimate the parameters; characterize accuracy. 

Test hypotheses:  Reject SM → “discovery” of New Physics 

Out of the two main interpretations of probability, 

     Frequentist – A = outcome of repeatable experiment: 

     Subjective (Bayesian) – A = hypothesis (true or false): 

HEP uses mainly frequentist methods (will focus on this today). 



G. Cowan  Hammers & Nails, Weizmann Inst. / 20 July 2017 5 

The Data 
The data x   =   raw (108 numbers), reduced (~10-100 numbers), 
                         or highly reduced (single number) 

x characterizes:   an individual particle,  
                            or the outcome of a particle collision (an “event”), 
                            or an entire dataset (a set of events) 

E.g. for case of an event, could have x = (x1, x2, ..., xn), 
x1 = number of jets, x2 = energy of highest energy jet, ... etc. 
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The Model(s) 
Probability to observe the data given by hypothesis (model) H: 

                            P(x|H)  

Often composite: 

                            P(x|H, θ) 

θ contains in general parameter(s) of interest (e.g., the rate of  an 
new signal process) and nuisance parameters (e.g., rates of 
background processes, calibration constants). 

If viewed as function of H, θ, then this is the likelihood: 

                            L(H, θ) = P(x|H, θ) 

The “Standard Model” (19 parameters, mostly well determined) 

Some alternatives:  supersymmetry, extra dimensions, ... 
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(Part of) the Standard Model 

In principle this determines P(x|θSM). 

In practice only have Monte Carlo models, i.e., we can generate 
events x ~ P(x|SM),  

Also for a variety of alternatives:  x ~ P(x|SUSY), etc. 

Even then many approximations needed (perturbation theory, 
nonperturbative effects, approximate detector response,..) 

+  ... 
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A simulated SUSY event in ATLAS 

high pT 
muons 

high pT jets  
of hadrons 

missing transverse energy 

p p 
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A top-antitop (Standard Model) event 

This event from Standard  
Model ttbar production also 
has high  pT jets and muons, 
and some missing transverse 
energy. 

→ can easily mimic a SUSY event. 

Search for presence of 
“New Physics” with a 
Statistical Test. 
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Frequentist Statistical Tests 
Consider  

 data x,  
 model to test (the null) P(x|H0), 
 an alternative model P(x|H1). 

Define critical region w such that for a given (small) size α 
 P(x ∈ w|H0) ≤ α 

Choose critical region to maximimize power M with respect to H1 
 M(H1) = P(x ∈ w|H1)  

Do the measurement.   
If x ∈ w, reject H0. 

α power 
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p-values 
Often formulate test in terms of p-value: 

pH = P(x ∈ region of equal or lesser compatibility | H) 

Distribution f(pH|H) uniform on [0,1], so can define critical 
region of a test as the region where the p-value is ≤ α. 

pH 

f(pH|H) 

0 1 

f(pH|H′) 

Formally the p-value relates only to H but the resulting test will 
have a given power with respect to a given alternative H′. 

“Less compatible with H” means “more compatible with alt. H′ ” 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 

E.g. Z = 5 (a “5 sigma effect”) corresponds to p = 2.9 × 10-7. 



G. Cowan  Hammers & Nails, Weizmann Inst. / 20 July 2017 13 

Constructing an optimal test 
Neyman-Pearson lemma: 

inside the region, and  < cα outside, where cα is a constant chosen 
to give a test of the desired size. 

Equivalently, optimal scalar test statistic is the likelihood ratio 

N.B. any monotonic function of this is leads to the same test. 

When choosing critical region w of test of H0 of a given size α, 
to obtain highest power with respect to H1, w should have  
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Event Classification viewed as a test 

Define statistic y(x) such that boundary of critical region is  y(x) = yc, 
using e.g., neural network, BDT, ..., optimally something that is a  
monotonic function of r(x) = p(x|s) / p (x|b). 

Suppose signal (s) and background (b) events have data x that 
follow p(x|s), p(x|b).  From simulated data find: 

Can test for each event hypothesis that it is of type b. 

Best critical region = ? (“cuts”, linear, nonlinear,...) 
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Test for discovery of signal process 
Goal:  search for events from an undiscovered signal process s in a 
sample of events otherwise consisting of background b. 

Measure x for each event:  x ~ p(x|s) or p(x|b)  (only have 
generative models, no closed formulae). 

Suppose we observe n events, data consist of:  n,   x1, ..., xn,  

Goal is to test     H0 : all events are of background type b 

versus    H1 : event sample contains some events of signal type s 

Suppose number of events n ~ Poisson(µs + b), where here s, b = 
expected number of events of corresponding type, (assume approx. 
known) and µ = signal strength parameter, i.e.,  

 H0 means µ = 0,   H1 (usually) means µ > 0. 
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Optimal test for discovery 
Likelihood function is: 

Neyman-Pearson say optimal statistic for test of µ = 0 versus 
alternative of nonzero µ  is 

or take log and drop constant term –µs, 
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Relation to optimal event classifier 
Optimal event classifier is (monotonic function of)  

But the ratio of distributions of r obeys  

For a monotonic function y(r), s and b 
pdfs transform with same Jacobian, so 

The statistic Q becomes 
(same as before!) 

So if we find an event classifier y(x) that is a monotonic 
function of the (optimal) LR, and then use Monte Carlo models 
to determine, the pdfs ~ p(y|s) and p(y|b), then we can get the 
optimal Q to test whole sample for presence of signal. 
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Toy example  

signal (red):  p(x|s),  
background (blue):  p(x|b),  
and contour of constant ratio 

Distribution of event classifier  
y = -2 ln [p(x|s)/p(x|b)] 

signal 

background 

y 

p(
y)
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Distribution of Q 

f (Q|µ = 0) 
f (Q|µ = 1) 

p-value of µ = 0 
(background only) 

Suppose in real experiment Q is observed here. 

If pµ < α, reject signal model µ at confidence level 1 – α. 

If p0  < 2.9 × 10-7, reject background-only model (signif. Z = 5). 

µ = 1 

p-value of µ = 1 
(signal plus 
background) 
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Parameter estimation 
Most commonly used estimator of a 
a parameter θ from Maximum Likelihood: 

Usually get covariance of estimators 
from 2nd derivatives of log-likelihood: 

In general they may have a nonzero bias: 

Least Squares used if measurements approx. Gaussian (and then 
equivalent to Maximum Likelihood) e.g. for tracking problems. 

ML/LS estimator may not in some cases be regarded as the optimal  
trade-off between bias/variance e.g. in problems with large numbers 
of poorly constrained parameters (cf. regularized unfolding). 
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Interval estimation, limits 
Carry out a test of size α for all values of a parameter µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The confidence interval will by construction contain the 
 true value of µ with probability of at least 1 – α. 

The interval will cover the true value of µ with probability ≥ 1 - α. 

Equivalently, the parameter values in the confidence interval have 
p-values of at least α. 

To find edge of interval (the “limit”), set pµ = α and solve for µ. 

If null intervals, i.e., pµ < α for all µ,                               (“CLs”)  
 
or use two-sided LR test (Feldman-Cousins / unified intervals) 



G. Cowan  Hammers & Nails, Weizmann Inst. / 20 July 2017 22 

Systematic uncertainties and nuisance parameters 
In general our model of the data is not perfect: 

x  

model:   

truth: 

Can improve model by including  
additional adjustable parameters. 

Nuisance parameter ↔ systematic uncertainty. Some point in the 
parameter space of the enlarged model should be “true”.   

Presence of nuisance parameter decreases sensitivity of analysis 
to the parameter of interest (e.g., increases variance of estimate). 
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p-values in cases with nuisance parameters 
Suppose we have a statistic qθ that we use to test a hypothesized 
value of a parameter θ, such that the p-value of θ is 

But what values of ν to use for f (qθ|θ, ν)? 
Fundamentally we want to reject θ only if pθ < α for all ν. 

 → “exact” confidence interval 
Recall that for statistics based on the profile likelihood ratio, the 
distribution f (qθ|θ, ν) becomes independent of the nuisance 
parameters in the large-sample limit. 
But in general for finite data samples this is not true; one may be 
unable to reject some θ values if all values of ν must be considered 
(resulting interval for θ “overcovers”). 



G. Cowan  Hammers & Nails, Weizmann Inst. / 20 July 2017 24 

Profile construction (“hybrid resampling”) 

Approximate procedure is to reject θ if pθ ≤ α where 
the p-value is computed assuming the value of the nuisance 
parameter that best fits the data for the specified θ: 

“double hat” notation means profiled 
value, i.e., parameter that maximizes 
likelihood for the given θ. 

The resulting confidence interval will have the correct coverage 
for the points  (θ, ˆ̂ν(θ)) . 

Elsewhere it may under- or overcover, but this is usually as good 
as we can do (check with MC if crucial or small sample problem). 
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 
 
 
Assume the ni are Poisson distributed with expectation values 

signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 
 
 
Assume the mi are Poisson distributed with expectation values 

nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 

maximizes L for 
specified µ

maximize L

Define critical region of test of µ by the region of data space 
that gives the lowest values of λ(µ).  

Important advantage of profile LR is that its distribution becomes 
independent of nuisance parameters in large sample limit. 
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Test statistic for discovery 
Try to reject background-only (µ = 0) hypothesis using 

i.e. here only regard upward fluctuation of data as evidence  
against the background-only hypothesis. 

Note that even though here physically µ  ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂
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Distribution of q0 in large-sample limit 
Assuming approximations valid in the large sample (asymptotic) 
limit, we can write down the full distribution of q0 as 

The special case µ′ = 0 is a “half chi-square” distribution:  

In large sample limit, f(q0|0) independent of nuisance parameters; 
f(q0|µ′)  depends on nuisance parameters through σ. 

CCGV, arXiv:1007.1727, EPJC 71 (2011) 1554. 
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  

The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 

CCGV, arXiv:1007.1727, EPJC 71 (2011) 1554. 
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Monte Carlo test of asymptotic formula 

Here take τ = 1. 

Asymptotic formula is  
good approximation to 5σ
level (q0 = 25) already for 
b ~ 20. 

CCGV, arXiv:1007.1727, EPJC 71 (2011) 1554. 
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Discovery:  the p0 plot 
The “local” p0 means the p-value of the background-only 
hypothesis obtained from the test of µ = 0 at each individual mH, 
without any correct for the Look-Elsewhere Effect. 

The “Expected” (dashed) curve gives the median p0 under 
assumption of the SM Higgs (µ = 1) at each mH. 

ATLAS, Phys. Lett. B 716 (2012) 1-29 

The blue band gives the 
width of the distribution 
(±1σ) of significances 
under assumption of the 
SM Higgs. 



I.e. when setting an upper limit, an upwards fluctuation of the data  
is not taken to mean incompatibility with the hypothesized µ:   

From observed qm find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 
For purposes of setting an upper limit on µ use 

where 

CCGV, arXiv:1007.1727, EPJC 71 (2011) 1554. 
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Example of upper limit on strength parameter µ 

ATLAS, Phys. Lett. 
B 710 (2012) 49-66 

For every value of mH, find the CLs upper limit on µ (solid line) 

Also for each mH, determine the distribution of upper limits µup one 
would obtain under the hypothesis of µ = 0 (dashed line). 

The dashed curve is the median µup, and the green (yellow) bands 
give the ± 1σ (2σ) regions of this distribution. 
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Expected (or median) significance / sensitivity 

When planning the experiment, we want to quantify how sensitive 
we are to a potential discovery, e.g., by given median significance 
assuming some nonzero strength parameter µ ′. 

So for p-value, need f(q0|0), for sensitivity, will need f(q0|µ ′),  
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I.  Discovery sensitivity for counting experiment with b known: 
 

 (a) 
 

 (b)  Profile likelihood  
                   ratio test & Asimov: 

II.  Discovery sensitivity with uncertainty in b, σb: 
 

 (a) 
  
 (b)  Profile likelihood ratio test & Asimov: 

Expected discovery significance for counting  
experiment with background uncertainty 
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 Counting experiment with known background 
Count a number of events n ~ Poisson(s+b), where 

 s = expected number of events from signal, 

 b = expected number of background events. 

Usually convert to equivalent significance: 

To test for discovery of signal compute p-value of s = 0 hypothesis, 

where Φ is the standard Gaussian cumulative distribution, e.g., 
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7. 

To characterize sensitivity to discovery, give expected (mean 
or median) Z under assumption of a given s. 
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s/√b for expected discovery significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for significance 
Poisson likelihood for parameter s is 

So the likelihood ratio statistic for testing s = 0 is 

To test for discovery use profile likelihood ratio: 

For now  
no nuisance  
params. 



G. Cowan  Hammers & Nails, Weizmann Inst. / 20 July 2017 40 

Approximate Poisson significance (continued) 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z|s], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(s+b),  median significance, 
assuming s, of the hypothesis s = 0 

“Exact” values from MC, 
jumps due to discrete data. 
 
Asimov √q0,A good approx. 
for broad range of s, b. 
 
s/√b only good for s « b. 

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727 
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Extending s/√b to case where b uncertain 
The intuitive explanation of s/√b is that it compares the signal, 
 s, to the standard deviation of n assuming no signal, √b. 

Now suppose the value of b is uncertain, characterized by a  
standard deviation σb. 

A reasonable guess is to replace √b by the quadratic sum of 
√b and σb, i.e., 

This has been used to optimize some analyses e.g. where  
σb cannot be neglected. 
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Profile likelihood with b uncertain 

This is the well studied “on/off” problem:  Cranmer 2005; 
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,... 

Measure two Poisson distributed values: 

 n ~ Poisson(s+b)         (primary or “search” measurement) 

 m ~ Poisson(τb)  (control measurement, τ known) 

The likelihood function is 

Use this to construct profile likelihood ratio (b is nuisance 
parmeter): 
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Ingredients for profile likelihood ratio 

To construct profile likelihood ratio from this need estimators: 

and in particular to test for discovery (s = 0),  
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Asymptotic significance 
Use profile likelihood ratio for q0, and then from this get discovery 
significance using asymptotic approximation (Wilks’ theorem): 

Essentially same as in: 



Or use the variance of b = m/τ,   
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Asimov approximation for median significance 
To get median discovery significance, replace n, m by their 
expectation values assuming background-plus-signal model: 

 n → s + b 
 m → τb 

,   to eliminate τ: ˆ 
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Limiting cases 
Expanding the Asimov formula in powers of s/b and 
σb

2/b (= 1/τ) gives 

So the “intuitive” formula can be justified as a limiting case 
of the significance from the profile likelihood ratio test evaluated  
with the Asimov data set. 
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Testing the formulae:  s = 5 
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Using sensitivity to optimize a cut 
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Summary on discovery sensitivity 

For large b, all formulae OK. 

For small b, s/√b and s/√(b+σb
2) overestimate the significance. 

 Could be important in optimization of searches with 
 low background. 

Formula maybe also OK if model is not simple on/off experiment,  
e.g., several background control measurements (checking this). 

Simple formula for expected discovery significance based on 
profile likelihood ratio test and Asimov approximation: 
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Summary and conclusions 
Statistical methods continue to play a crucial role in HEP 
analyses; Higgs discovery is an important example. 

HEP has focused on frequentist tests for both p-values and limits. 

We are very concerned with reporting p-values accurately, so 
worry a lot about systematic uncertainties, nuisance parameters. 

Often rely heavily on asymptotic distributions for tests. 

Many important questions untouched in this talk, e.g., 

 Corrections for Look-Elsewhere Effect (EG, OV), 

 Use of Bayesian methods for both limits and discovery, 

 Unfolding (deconvolution),... 
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Eilam! תודה 
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Ofer explains... 
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Extra slides 
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The Look-Elsewhere Effect 

Gross and Vitells, EPJC 70:525-530,2010, arXiv:1005.1891 

Suppose a model for a mass distribution allows for a peak at 
a mass m with amplitude µ.

The data show a bump at a mass m0. 

How consistent is this 
with the no-bump (µ = 0) 
hypothesis? 
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Local p-value 
First, suppose the mass m0 of the peak was specified a priori. 

Test consistency of bump with the no-signal (µ = 0) hypothesis  
with e.g. likelihood ratio  

where “fix” indicates that the mass of the peak is fixed to m0. 

The resulting p-value  

gives the probability to find a value of tfix at least as great as 
observed at the specific mass m0 and is called the local p-value. 
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Global p-value 
But suppose we did not know where in the distribution to 
expect a peak. 

What we want is the probability to find a peak at least as  
significant as the one observed anywhere in the distribution. 

Include the mass as an adjustable parameter in the fit, test  
significance of peak using 

(Note m does not appear 
in the µ = 0 model.) 
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Distributions of tfix, tfloat 

For a sufficiently large data sample, tfix ~chi-square for 1 degree 
of freedom (Wilks’ theorem). 

For tfloat there are two adjustable parameters, µ and m, and naively 
Wilks theorem says tfloat ~ chi-square for 2 d.o.f. 

In fact Wilks’ theorem does 
not hold in the floating mass 
case because on of the 
parameters (m) is not-defined 
in the µ = 0 model. 

So getting tfloat distribution is 
more difficult. 

Gross and Vitells 
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Approximate correction for LEE 
We would like to be able to relate the p-values for the fixed and 
floating mass analyses (at least approximately). 

Gross and Vitells show the p-values are approximately related by 

where 〈N(c)〉 is the mean number “upcrossings” of   
tfix = -2ln λ  in the fit range based on a threshold 

and where Zlocal = Φ-1(1 – plocal) is the local significance. 
So we can either carry out the full floating-mass analysis (e.g.  
use MC to get p-value), or do fixed mass analysis and apply a  
correction factor (much faster than MC). 

Gross and Vitells 
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Upcrossings of -2lnL 

〈N(c)〉 can be estimated  
from  MC (or the real  
data) using a much lower  
threshold c0: 

Gross and Vitells 

The Gross-Vitells formula for the trials factor requires 〈N(c)〉, 
the mean number  “upcrossings” of tfix = -2ln λ in the fit range based  
on a threshold c = tfix= Zfix

2. 
  

In this way 〈N(c)〉 can be 
estimated without need of 
large MC samples, even if  
the the threshold c is quite 
high. 



G. Cowan  Hammers & Nails, Weizmann Inst. / 20 July 2017 61 

Multidimensional look-elsewhere effect 
Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 

Vitells and Gross, Astropart. Phys. 35 (2011) 230-234; arXiv:1105.4355 
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Remember the Look-Elsewhere Effect is when we test a single 
model (e.g., SM) with multiple observations, i..e, in mulitple 
places. 

Note there is no look-elsewhere effect when considering 
exclusion limits.    There we test specific signal models (typically 
once) and say whether each is excluded. 

With exclusion there is, however, the analogous issue of testing  
many signal models (or parameter values) and thus excluding  
some even in the absence of signal (“spurious exclusion”) 

Approximate correction for LEE should be sufficient, and one  
should also report the uncorrected significance. 

 “There's no sense in being precise when you don't even  
 know what you're talking about.” ––  John von Neumann 

Summary on Look-Elsewhere Effect 
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Common practice in HEP has been to claim a discovery if the  
p-value of the no-signal hypothesis is below 2.9 × 10-7,  
corresponding to a significance Z = Φ-1 (1 – p) = 5 (a 5σ effect). 

There a number of reasons why one may want to require such 
a high threshold for discovery: 

 The “cost” of announcing a false discovery is high. 

 Unsure about systematics. 

 Unsure about look-elsewhere effect. 

 The implied signal may be a priori highly improbable 
 (e.g., violation of Lorentz invariance). 

Why 5 sigma? 
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But the primary role of the p-value is to quantify the probability 
that the background-only model gives a statistical fluctuation 
as big as the one seen or bigger. 

It is not intended as a means to protect against hidden systematics 
or the high standard required for a claim of an important discovery. 

In the processes of establishing a discovery there comes a point 
where it is clear that the observation is not simply a fluctuation, 
but an “effect”, and the focus shifts to whether this is new physics 
or a systematic. 

Providing LEE is dealt with, that threshold is probably closer to 
3σ than 5σ. 

Why 5 sigma (cont.)? 
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Toy study on variable selection 
Consider two variables, x1 and x2, and suppose we have formulas 
for the joint pdfs for both signal (s) and background (b) events (in 
real problems the formulas are usually not available). 

     f(x1|x2) ~ Gaussian, different means for s/b, 
    Gaussians have same σ, which depends on x2, 
    f(x2) ~ exponential, same for both s and b, 
    f(x1, x2) =  f(x1|x2) f(x2): 



G. Cowan  Hammers & Nails, Weizmann Inst. / 20 July 2017 66 

Joint and marginal distributions of x1, x2 

background 

signal 

Distribution f(x2) same for s, b. 

So does x2 help discriminate 
between the two event types? 
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Likelihood ratio for 2D example 

Neyman-Pearson lemma says best critical region is determined 
by the likelihood ratio: 

Equivalently we can use any monotonic function of this as 
a test statistic, e.g., 

Boundary of optimal critical region will be curve of constant ln t, 
and this depends on x2! 
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Contours of constant classifier output 

Exact likelihood ratio Fisher discriminant 
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Contours of constant classifier output 

Multilayer Perceptron 
1 hidden layer with 2 nodes 

Boosted Decision Tree 
200 iterations (AdaBoost) 

Training samples:  105 signal and 105 background events 
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ROC curve 

ROC = “receiver operating  
characteristic” (term from  
signal processing). 
 
Shows (usually) background  
rejection (1-εb) versus  
signal efficiency εs. 
 
Higher curve is better;  
usually analysis focused on 
a small part of the curve. 
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2D Example:  discussion 
Even though the distribution of x2 is same for signal and 
background, x1 and x2 are not independent, so using x2 as an input 
variable helps. 

Here we can understand why:  high values of x2 correspond to a 
smaller σ for the Gaussian of x1.  So high x2 means that the value 
of x1 was well measured. 

If we don’t consider x2, then all of the x1 measurements are 
lumped together.  Those with large σ (low x2) “pollute” the well 
measured events with low σ (high x2). 

Often in HEP there may be variables that are characteristic of how 
well measured an event is (region of detector, number of pile-up 
vertices,...).  Including these variables in a multivariate analysis 
preserves the information carried by the well-measured events, 
leading to improved performance. 
 
 
 
In this example we can understand why x2 is useful, even 
though both signal and background have same pdf for x2. 


