#### How do we define jets?

Dan Guest

UC Irvine

July 20, 2017

## What is a jet?

- ▶ Protons go in
- ➤ Some *interesting* particle produced
- ▶ Decays to intermediate
  - $\triangleright$  2 *H* in this example
- ▶ Decay to more *boring* particles
- ► We want to reconstruct the *intermediate* particle
  - ► Particle type
  - ► Momentum



# Where do the boring particles go?



# The challenge: multiple jets



#### But wait, it gets worse



This is 79 collisions! Remove tracks and calo energy 78 of them.

#### Pretend it's a 2d problem

Figure from <u>arXiv:1612.01551</u>

- ► Of course it's not
- ► Multiple types of particles
  - ▶ Tracks have 5 parameters
  - ► Calo energy has depth, shape
- ▶ But thinking in 5d is hard
  - ► Also experiment-specific



#### Then cluster in 2d

- 1. Make every particle into a vector
- 2. Cluster in  $\phi$ -y space  $(y \approx \eta)$





### Clustering algorithm

- 1. Calculate  $d_{iB}$  for each particle,  $d_{ij}$  for each pair
- 2. If  $d_{ij} > d_{iB}$  for all j call it a "jet"
- 3. Find smallest  $d_{ij}$ , combine i and j
- 4. to back to step 1

Stop when everything is a jet

| $d_{ij} = \min(p_{\mathrm{T}i}^{2n}, p_{\mathrm{T}j}^{2n}) R_{ij}^2$ |
|----------------------------------------------------------------------|
| $R_{ij}^2 \equiv (\phi_i - \phi_j)^2 + (y_i - y_j)^2$                |
| $d_{iB} = p_{\mathrm{T}i}^{2n} R_0^2$                                |

| Algorithm                | $\mid n \mid$ |
|--------------------------|---------------|
| $k_{ m T}$               | 1             |
| Cambridge-Aachen         | 0             |
| $	ext{Anti-}k_{	ext{T}}$ | -1            |

#### Theorists love this

- ► Completely standardized via FASTJET
- ▶ They even built a workshop around it



This is the 9th year!

#### Correcting the Particle Momentum (Calibration)

- ▶ Problem: the (clustered) jet momentum is wrong
  - ▶ Neutrinos, incorrect clustering, detector response
- ► Solution: several grad-student years of work (per experiment)



#### Classification

► So far this is all the machine learning



#### In Summary

- ightharpoonup All the ML happens *after* we define jets
- ▶ But there are lots of places we could use it
  - ► Definition of jet inputs
  - ► Sequential clustering
    - ▶ Lots of input from theory here
    - ▶ But still ignores everything but momentum
  - ▶ Calibration

#### You can still make it

