Learning, Optimization and Generalization

Nati Srebro

TTI-Chicago

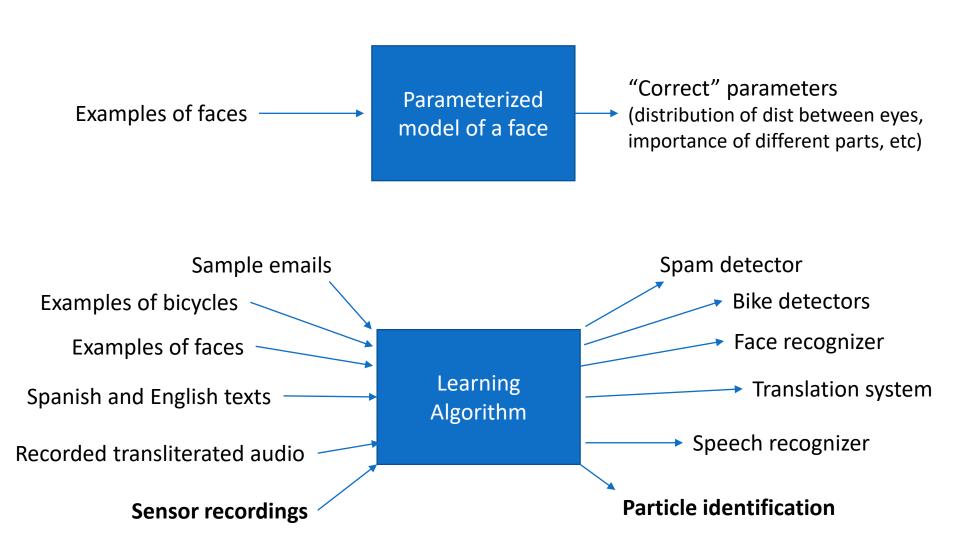
Menu

- Part I: (my view of) Learning ... and Optimization
- Part II: Deep Learning and Optimizaiton

What is "Machine Learning"?

"Machine Learning" as an Engineering Paradigm: Use data and examples, instead of expert knowledge, to automatically create systems that perform complex tasks

Generic Learning



The ability to learn grammars is **hard-wired** into the brain. It is not possible to "learn" linguistic ability—rather, we are born with a brain apparatus specific to language representation.

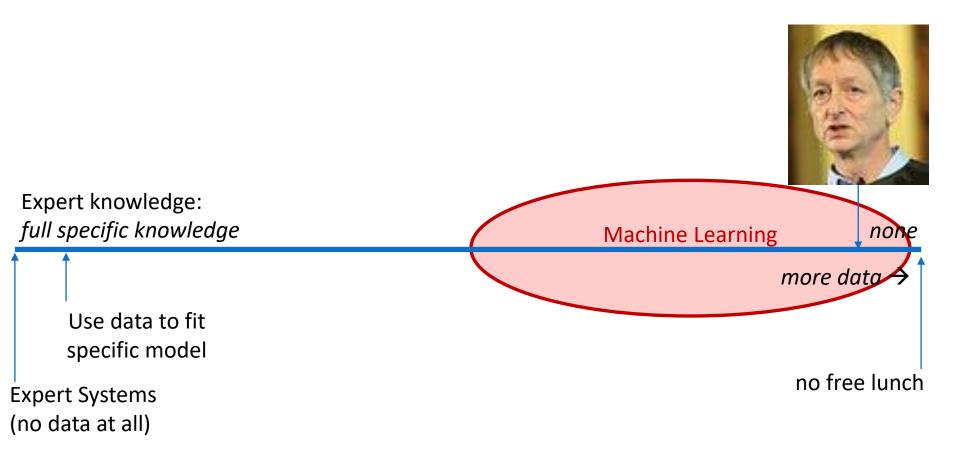
Noam Chomsky

Dav

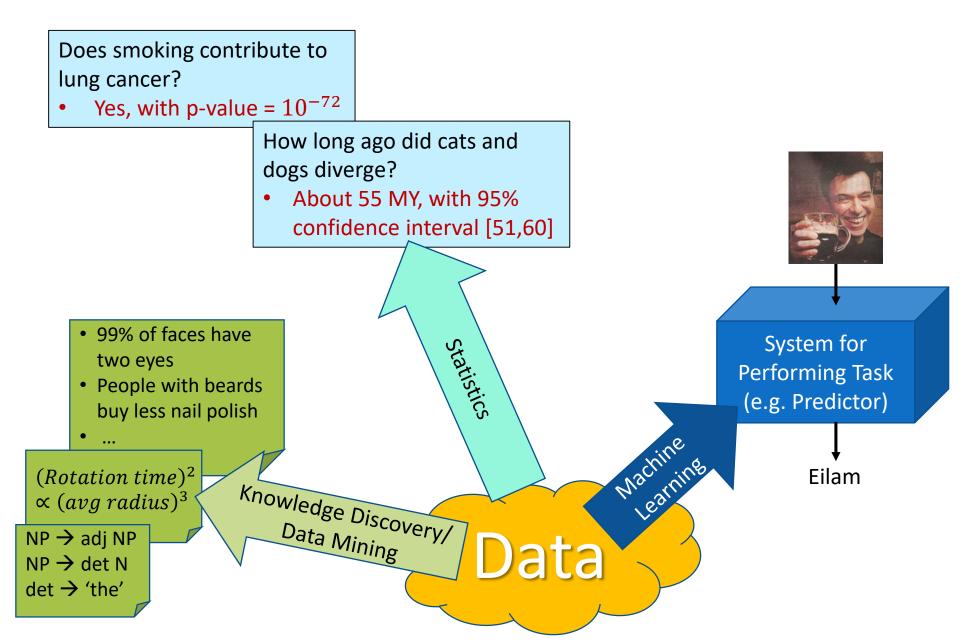
There exists some "universal" learning algorithm that can learn **anything**: language, vision, speech, etc. The brain is based on it, and we're working on uncovering it. (Hint: the brain uses neural networks)

There is no "free lunch": no learning is possible without *some* prior assumption about the structure of the problem (prior knowledge)

More Data, Less Expert Knowledge



"Machine Learning": Use data and examples, instead of expert knowledge, to automatically create systems that perform complex tasks



Learning and Optimization

- Optimization *for* learning:
 - Modeling: Choose hypothesis class and/or regularizer
 - Optimization: Optimize empirical objective (on training data)

$$\hat{h} = \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} loss(h(x_i), y_i) + Reg(h)$$

- Statistics: If $\mathcal H$ small or Reg(h) low, $\hat h$ also has low generalization error
- Stochastic optimization (eg SGD) for learning: $w^{(t+1)} \leftarrow w^{(t)} - \eta_t \nabla_w loss \left(h_{w^{(t)}}(x_{i_t}, y_{i_t}) \right)$
- Learning *is* (stochastic) optimization: $\min_{h} E_{x,y\sim\mathcal{D}}[loss(h(x),y)]$ based on sample $(x_1, y_1), \dots, (x_n, y_n)\sim\mathcal{D}$

Stochastic Optimization Setting

$$\min_{w \in \mathcal{W}} F(w) = \mathbb{E}_{z \sim \mathcal{D}}[f(w, z)]$$

based only on stochastic information on F

- Only unbiased estimates of F(w), $\nabla F(w)$
- No direct access to F
- E.g., fixed f(w, z) but \mathcal{D} unknown
 - Optimize F(w) based on iid sample $z_1, z_2, ..., z_m \sim D$
 - $g = \nabla f(w, z_t)$ is unbiased estimate of $\nabla F(w)$
- Traditional applications
 - Optimization under uncertainty
 - Uncertainty about network performance
 - Uncertainty about client demands
 - Uncertainty about system behavior in control problems
 - Complex systems where its easier to sample then integrate over z

Stochastic Optimization $\equiv \text{``Generalized Learning''}$ $\min_{h} \mathbb{E}_{z \sim \mathcal{D}}[f(h, z)]$

z = (x, y)

• Supervised learning:

- k-means clustering:
- f(h; (x, y)) = loss(h(x), y) $z = x \in \mathbb{R}^{d}$ $h = (\mu[1], \mu[2], ..., \mu[k]) \text{ specify } k \text{ centers}$ $f((\mu[1], \mu[2], ..., \mu[k]); x) = \min_{i} ||\mu[j] - x||^{2}$
- Density estimation:
- h specifies probability density $p_h(x)$ $f(h; x) = -\log p_h(x)$

h specifies a predictor $h: \mathcal{X} \to \mathcal{Y}$

• More general learning: z = traffic delays on each road segmenth = route chosen (indicator over road segments) $f(h; z) = \langle z, h \rangle = \text{total delay along route}$

Optimization	Statistics	COLT	NIPS
x	β	h	W

Stochastic Optimization

• Focus on computational efficiency

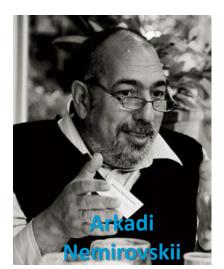
•Generally assumes unlimited sampling

- as in monte-carlo methods for complicated objectives

•Optimization variable generally a vector in a normed space

- complexity control through norm

Mostly convex objectives



VS

Statistical Learning

- •Focus on sample size
- •What can be done with a fixed number of samples?

Abstract hypothesis classes

- linear predictors, but also combinatorial hypothesis classes
- generic measures of complexity such as VC-dim, fat shattering, Radamacher

• Also non-convex classes and loss functions

Two Approaches to Stochastic Optimization / Learning $\min F(w) = \mathbb{E} - \left[f(w, z)\right]$

$$\min_{w \in \mathcal{W}} F(w) = \mathbb{E}_{z \sim \mathcal{D}}[f(w, z)]$$

- Empirical Risk Minimization (ERM)
 / Sample Average Approximation (SAA):
 - Collect sample *z*₁,...,*z*_m
 - Minimize $F_S(w) = \frac{1}{m} \sum_i f(w, z_i)$
 - Analysis typically based on Uniform Concentration
- Stochastic Approximation (SA): [Robins Monro 1951]
 - Update $w^{(t)}$ based on z_t
 - E.g., based on $g^{(t)} = \nabla f(w, z_t)$
 - Simplest method: stochastic gradient descent
 - Similar to online approach in learning (more on this later)

Why is this important?

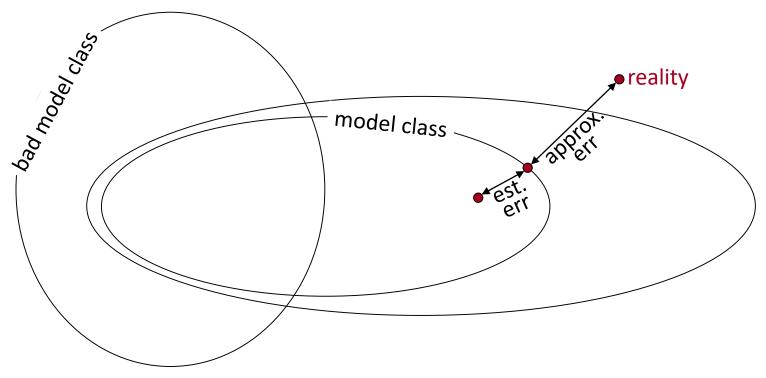
- Borrowing ideas and techniques, merging of communities
- Understanding optimality (in terms of sample complexity *and* runtime) of stochastic approximation algorithms
 - SGD optimal for SVM-type problems
 - Mirror Descent optimal* for any** convex problem
- Understanding how optimization algorithm can guarantee generalization directly, providing implicit inductive bias (regularization) without explicitly specifying hypothesis class / regularizer / model:

$$w^{(t+1)} \leftarrow w^{(t)} - \eta \nabla loss(w^{(t)}, (x_t, y_t))$$

$$\Rightarrow \mathbb{E}\left[loss(w^{(t)})\right] \le \mathbb{E}\left[loss(w^*)\right] + \sqrt{\frac{\|w^*\|^2 \|x\|^2}{t}}$$

• Emphasize importance of computational aspects

Machine Learning



- We want model classes (hypothesis classes) that:
 - Are expressive enough to capture reality well
 - Have small enough capacity to allow generalization
- Use "expert knowledge" to design small model class that capture relevant reality well

Free Lunches

- No Free Lunch: For any learning rule, there exists a source (i.e. reality), for which the learning rule yields expected error ½
 - If we try learning all possible hypothesis (take model class to be all possible functions), estimation is impossible
 - Must introduce inductive bias / prior knowledge
- Universal Learning (Free Lunch):
 - "Universal" inductive bias, captures anything we might want to learn

 $\mathcal{H}_{\operatorname{time}(T)} = \{ all functions computable in time T \}$

 $\mathcal{H}_{desc-length(L)} = \{functions \ computable \ by \ program \ of \ length \leq L \ \}$

- Sample complexity $\propto T$ or $\propto L$
- If there isn't an efficient program (no way to perform task efficiently), no point in "learning" how to perform task

Minimum Description Length Learner

- Task: predict *y* from *x*
- Input: labeled training set $S = \{(x_1, y_1), (x_2, y_2), ...\}$
- Return shortest program $p: x \mapsto y$ s.t. $p(x_i) = y_i$ for all $(x_i, y_i) \in S$

Minimum Description Length (Noisy)

- Task: predict y from x
- Input: labeled training set $S = \{(x_1, y_1), (x_2, y_2), ...\}$
- Split training set to S_{tr}, S_{val}
- For each length L:
 - $h_L = \operatorname{program} \, p \colon x \mapsto y$ of length $|p| \leq L$ with minimum error on S_{tr}
- Return h_L with minimum error on S_{val}
- "Universal Learner": learns any poly-time function to within any error with polynomial sample complexity
- Theoretically: only a constant more training examples compared to any programmable learning rule
- "In Practice": beats your (and anybody else's) learning method

No Free Lunch After All...

- Problem: "find shortest program consistent with S", or "find program of length $\leq L$ minimizing training error" is not computable
- Also "find short program consistent with ${\cal S}$ and with short run time on ${\cal S}" \, {\rm is} \, {\rm NP-hard}$
- Not only NP-hard, its really really really hard.
- In fact, Universal Learning is hopeless:

Unless crypto collapses, there is no polytime learning algorithm that can learn "functions computable in time T"

- i.e. even if we know ∃ time-T function with zero error, we can't even ensure error <¼ in poly-time
- Machine Learning Challenge
 - Expressive power: capture reality well
 - Low capacity: generalize well, low sample complexity
 - Computationally efficient

Hypothesis Class of Feed Forward Neural Networks

• Fix architecture (connection graph G(V, E), transfer σ)

 $\mathcal{H}_{G(V,E),\sigma} = \{ f_w(x) = output \ of \ net \ with \ weights \ w \}$

• Expressive Power / Approximation:

- What functions can we represent/approximate?
- Does $\mathcal H$ "capture reality" well?
- Estimation:
 - What is the capacity / VC-dimension of $\mathcal H$?
 - How well do we generalize to new data if we choose weights that minimize error on training data
 - How many samples do we need in order to generalize?
- Computation

Sample Complexity of NN

- #params = |E| (number of weights we need to learn)
- More formally: $VCdim(\mathcal{H}_{G(V,E),sign}) = O(|E|\log|E|)$
- Other activation functions?
 - $VCdim(\mathcal{H}_{G(V,E),sin}) = \infty$ even with single unit and single real-valued input
 - $VCdim(\mathcal{H}_{G(V,E),\text{RELU}}) = \widetilde{\Theta}(|E| \cdot depth)$
 - With finite precision (or a bit of regularization):

 $VCdim\big(\mathcal{H}_{G(V,E),\sigma}\big) = O(|E|)$

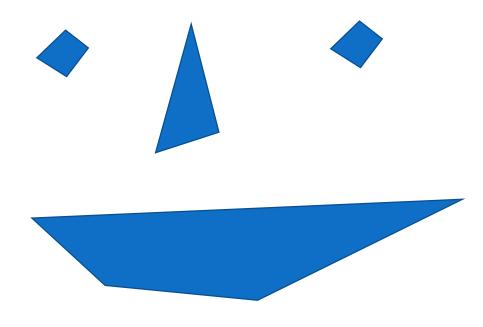
• Bottom line: |*E*| (number of weights) controls sample complexity

What can Feed-Forward Networks Represent?

- Any function over $\mathcal{X} = \{\pm 1\}^d$
 - With a single hidden layer, using DNF (hidden layer does AND, output does OR)
 - $|V| = 2^d, |E| = d2^d$
 - Like representing the truth table directly...
- Universal Representation Theorem: Any continuous functions
 f: [0,1]^d → ℝ can be approximated to within any ε by a feed-forward
 network with sigmoidal (or almost any other) activation and a single
 hidden layer.
 - Size of layer exponential in d
- Compare: With a large enough #params (large enough #features, small enough margin) even a *linear* model can approximate any continuous function arbitrary well (e.g. using Gaussian kernel)

What can SMALL Networks Represent?

- Intersection of halfspaces
 - Using single hidden layer
- Union of intersection of halfspaces (and also sorting, more fun stuff, ...)
 - Using two hidden layers



What can SMALL Networks Represent?

- Intersection of halfspaces
 - Using single hidden layer
- Union of intersection of halfspaces (and also sorting, more fun stuff, ...)
 - Using two hidden layers

 \Rightarrow Universal Learning (learn anything computable in time T) with poly(T) samples

 Compare: to get "universal approximation" with linear models / kernels, margin must shrink (and #features must grow) exponentially

Optimization

$ERM(S) = \arg\min_{w} L_S(f_w)$

- Highly non-convex problem, even if loss and activation σ are convex
- NP-Hard even with single hidden layer and three hidden units
- Not surprising: otherwise, can learn hypothesis class of all poly-time functions
- Conclusion: Under crypto assumptions, no algorithm for learning $\mathcal{H}_{G(V,E),\sigma}$ in time poly(|E|)
- In fact, even two-layer networks are hard:
 For x ∈ ℝ^d, and binary labels generated by two-layer network with log(d) hidden units, no poly-time learning algorithm ensuring error < ¼
 - Even in noiseless case (labels *exactly* follow small two-layer network)
 - Even if algorithm allowed to use much larger network (or any type of predictor)

[Kearns Valiant '94, $\log(d)$ -depth; Klivans Sherstov '06, two-layer O(d) units; Daniely Linial Shalev-Shwartz '14, $\log(d)$ units]

Choose your universal learner:

Short Programs

- Universal
- Captures anything we want with reasonable sample complexity
- NP-hard to learn
- Hard to optimize in practice
 - No practical local search
 - Highly non-continuous, disconnected discrete space
 - Not much success

Deep Networks

- Universal
- Captures anything we want with reasonable sample complexity
- NP-hard to learn
- Often easy to optimize
 - Continuous
 - Amenable to local search, stochastic local search
 - Lots of empirical success

Theory of Neural Network Learning: Interim Summary

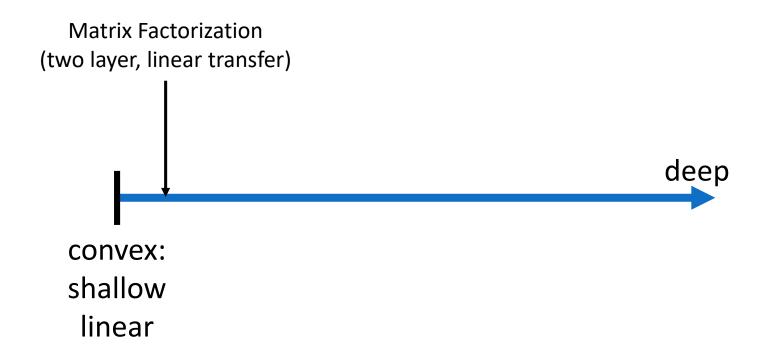
- Expressive Power
 - Universal, all poly-time functions
- Capacity Control (Sample Complexity)
 - \propto number of weights
- Optimization
 ?????

Not: "what about reality is captured by my NN architecture" Rather: "what about reality makes it easy to optimize my NN" "its easy to optimize my NN *on real data,* because *real data has such and such properties*"

You want convexity?

- Consider learning with a hypothesis class $\mathcal{H} = \{h: \mathcal{X} \to \mathbb{R}\}\$ $\hat{L}(h) = \Sigma_t loss(h(x_t); y_t)$
- With any meaningful loss, $\hat{L}(h_w)$ can be convex in a parameterization w, only if $h_w(x)$ is affine in w, i.e. $h_w(x) = \langle w, \phi(x) \rangle + \phi_0(x)$
- Rich variety of learning problems obtained with different (sometimes implicit) choices of linear hypothesis classes, feature mappings Á, and loss functions.

(For 0/1 error, which is what we really care about, even linear learning is non-convex, NP-hard to optimize, and crypto-hard to learn)



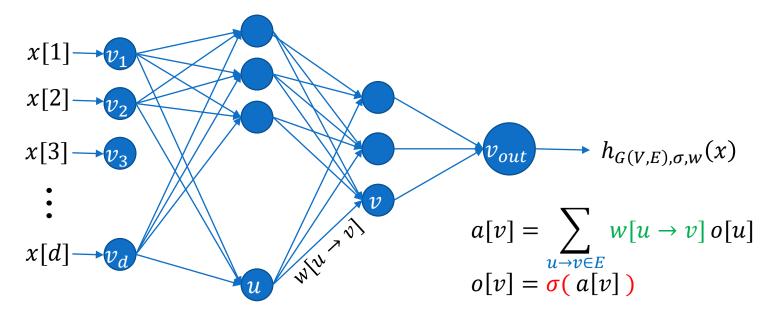
Feed Forward Neural Networks

• Fix architecture (connection graph G(V, E), transfer σ)

 $\mathcal{H}_{G(V,E),\sigma} = \{ f_{w}(x) = output \ of \ net \ with \ weights \ w \}$

- Capacity / Generalization ability / Sample Complexity
 - $\tilde{O}(|E|)$ (number of edges, i.e. number of weights) (with threshold σ , or with RELU and finite precision; RELU with inf precision: $\tilde{\Theta}(|E| \cdot \text{depth})$)
- Expressive Power / Approximation
 - Lots of interesting things naturally with small networks
 - Any *T* computable function with network of size $\widetilde{O}(T)$
- Computation / Optimization
 - Even if function exactly representable with single hidden layer with Θ(log d) units, even with no noise, and even if we allow a much larger network when learning: no poly-time algorithm always works [Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz '14]
 - Magic property of reality that makes local search "work"

Feed-Forward Neural Networks (The Multilayer Perceptron)



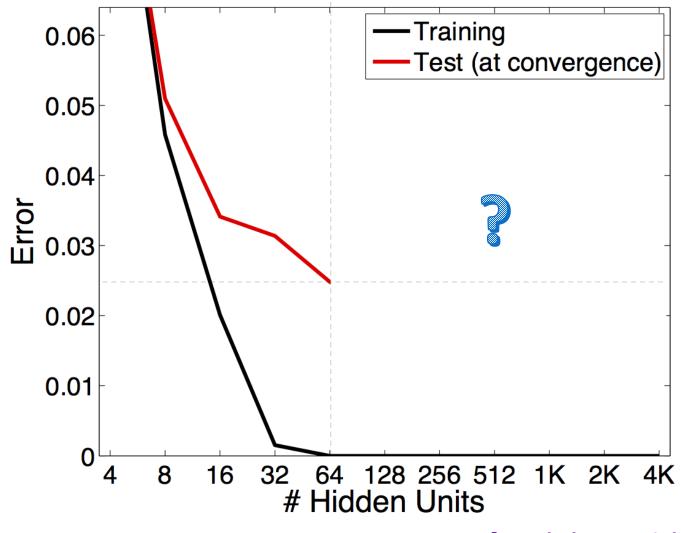
Architecture:

- Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
 - "Input Units" $v_1 \dots v_d \in V$, with no incoming edges and $o[v_i] = x[i]$
 - "Output Unit" $v_{out} \in V$, $h_w(x) = o[v_{out}]$
- "Activation Function" $\sigma: \mathbb{R} \to \mathbb{R}$. E.g. $\sigma_{RELU}(z) = [z]_+$

Parameters:

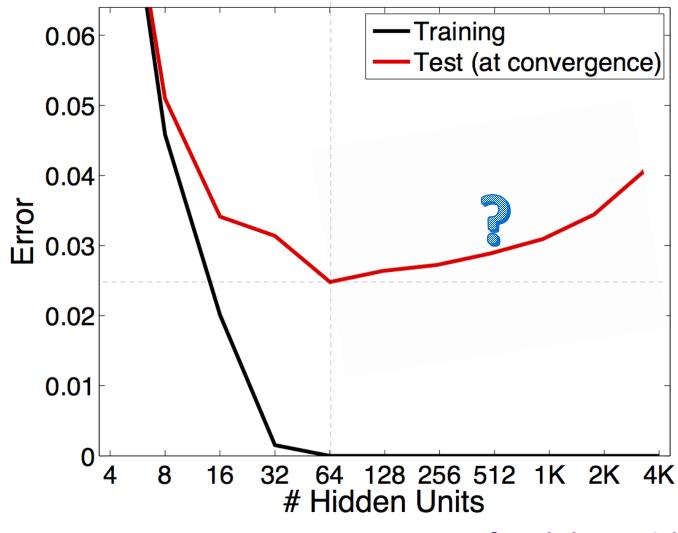
• Weight $w[u \rightarrow v]$ for each edge $u \rightarrow v \in E$

Increasing the Network Size (Number of Hidden Units)



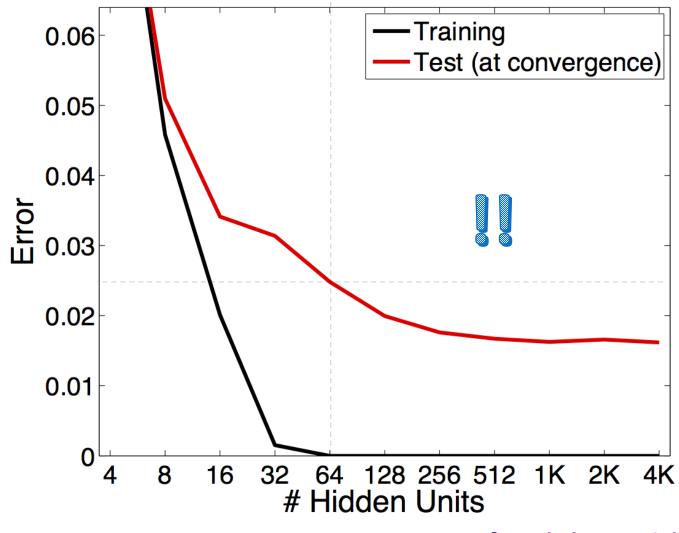
[Neyshabur Tomioka S ICLR'15]

Increasing the Network Size (Number of Hidden Units)



[Neyshabur Tomioka S ICLR'15]

Increasing the Network Size (Number of Hidden Units)



[Neyshabur Tomioka S ICLR'15]

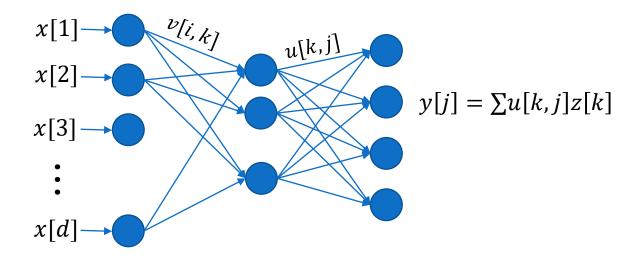
Feed Forward Neural Networks

• Capacity / Generalization ability

• Expressive Power / Approximation

• Computation / Optimization

Two Layer Networks with Linear Transfer (aka Matrix Factorization)



$$y = U(Vx) = Wx$$

$$\uparrow$$

$$W = UV$$

r hidden units $\Leftrightarrow rank(W) \leq r$

Norm-Bounded Factorization

• Instead of rank(W) [number of hidden units] consider $||W||_{tr} = \min_{W=UV} ||U||_{Fro} ||V||_{Fro}$ [magnitude of weights]

(or other factorization norms such as weighted trace norm, max-norm aka $\gamma_2: 1 \rightarrow \infty$ norm, etc)

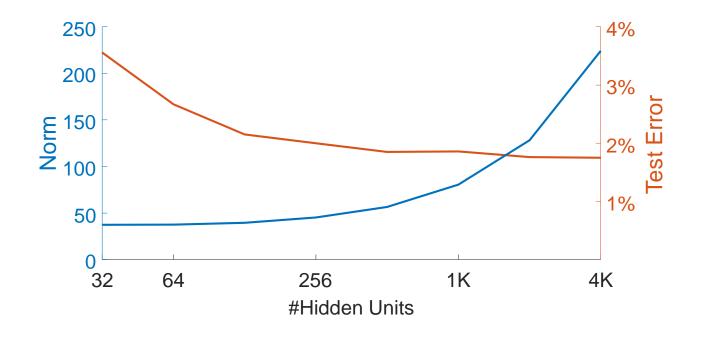
- Convex, easier to optimize, no spurious local minima in high enough dimension even when optimizing over U, V
- But also: better inductive bias
 - Richer and more expressive model, allowing unbounded number of factors.
 - Infinite factor model with bound sum of "importance" of factors, not their number

Increasing the Rank

$$W_k = \arg\min_{rank(W) \le k} \|W\|_{tr} \text{ s.t. } L(W) = 0$$

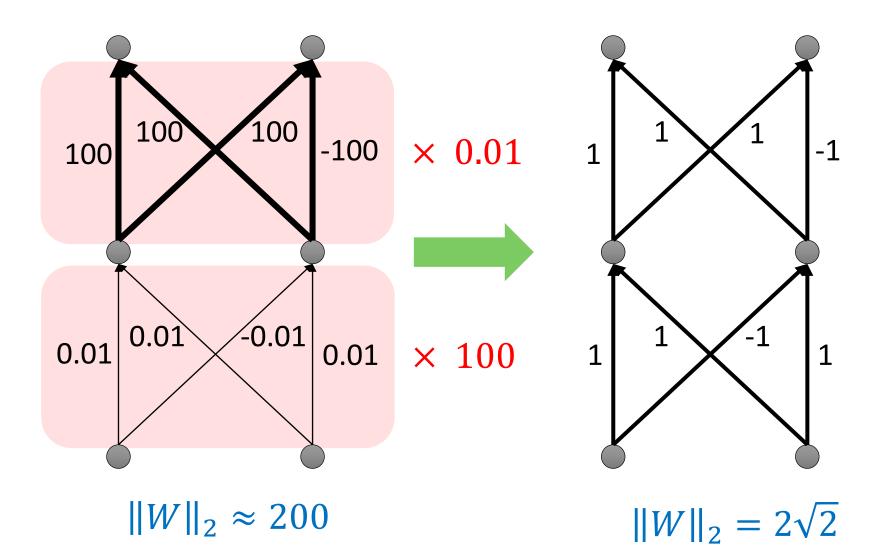
- rank(W_k) increases with k
 → more complex in terms of rank
- $||W_k||_{tr}$ decreases with k \Rightarrow simpler in terms of norm
- If norm is better "inductive bias", W_k generalizes better as $k \nearrow$
- In practice, for many tasks (including NetFlix) $W_k = \arg\min_W L(W) + \lambda \|W\|_{tr} \quad s.t. \; rank(W) = k$ Test error of W_k monotonically decreases as $k \nearrow$

Is improved Generalization explained by Decrease in Norm?



Norm = $||W||_2 = \sqrt{\sum_e w(e)^2}$

$||W||_2$ doesn't capture complexity

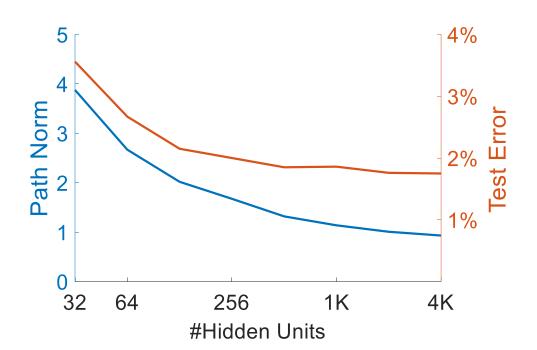


The Path-Norm

$$\phi(W) = \sqrt{\sum_{\text{path } e \in \text{path}} w(e)^2}$$

With ReLU activations:

- Invariant to "weight balancing" \rightarrow depends more directly on f_W
- Bounding the path-norm provides capacity control and ensures generalization, independent of #units (and even if #units unbounded)

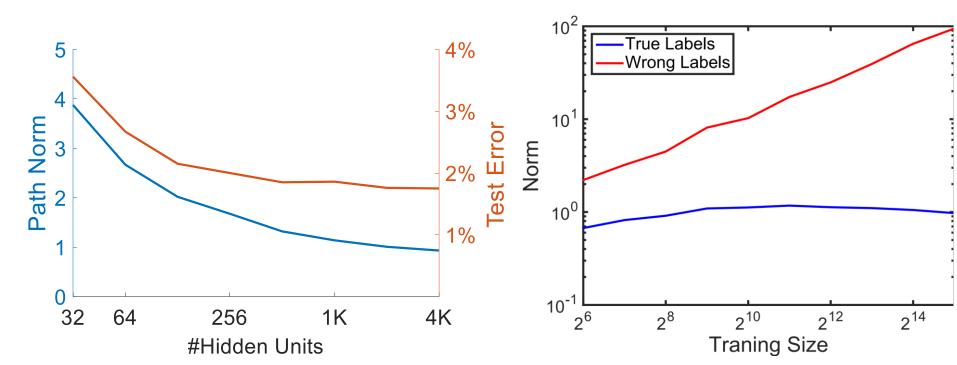


The Path-Norm

$$\phi(W) = \sqrt{\sum_{\text{path } e \in \text{path}} w(e)^2}$$

With ReLU activations:

- Invariant to "weight balancing" \rightarrow depends more directly on f_W
- Bounding the path-norm provides capacity control and ensures generalization, independent of #units (and even if #units unbounded)

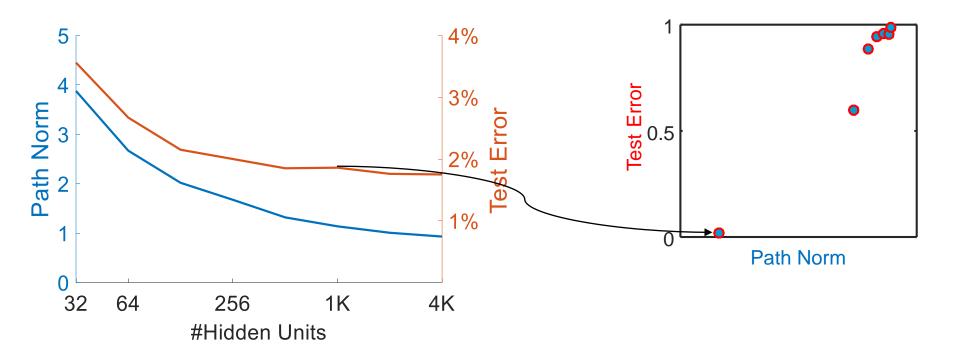


The Path-Norm

$$\phi(W) = \sqrt{\sum_{\text{path } e \in \text{path}} w(e)^2}$$

With ReLU activations:

- Invariant to "weight balancing" \rightarrow depends more directly on f_W
- Bounding the path-norm provides capacity control and ensures generalization, independent of #units (and even if #units unbounded)



Where is the Regularization?

- What we did: minimize **unregularized** error **to convergence**
- In convex models, we understand how one-pass SGD (or with *early stopping*) provides for implicit ℓ_2 regularization
 - More generally, one-pass Mirror Descent provides generalization w.r.t. any* inductive bias
 - Inductive Bias ⇔ choice of potential for Mirror Descent
- We are getting implicit regularization, without early stopping
- In underdetermined problem (lots of global optima), optimization is biasing us toward specific global optimum.
- What's the bias introduced by the optimization?
- Can we get better bias by changing optimization?

Optimization is Tied to Choice of Geometry

Steepest descent w.r.t. a geometry:

$$w^{(t+1)} = \arg\min_{w} \eta \langle \nabla L(w^{(t)}), w \rangle + \delta(w^{(t+1)}, w)$$

 \checkmark improve the objective as much as possible

✓ only a small change in the model.

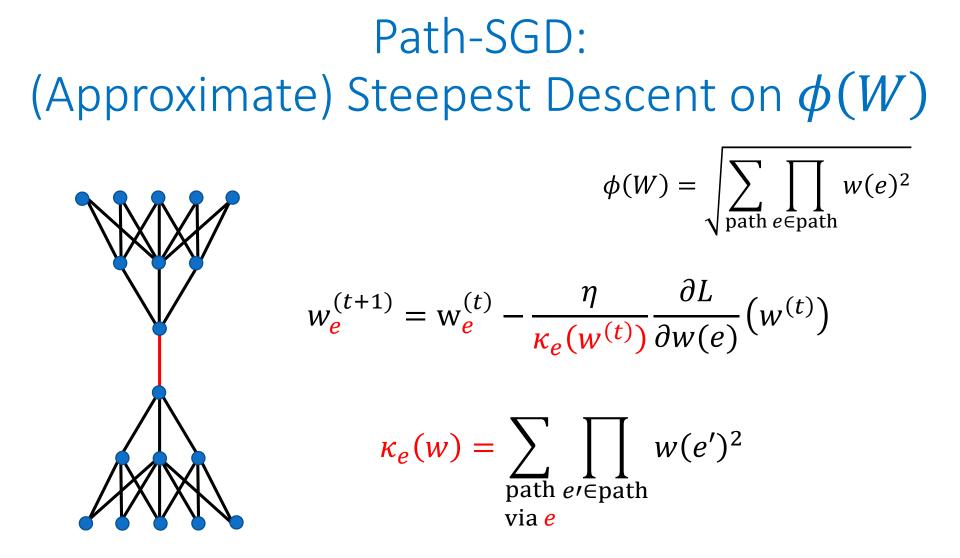
Examples:

- Gradient Descent: Steepest descent w.r.t ℓ_2
- Coordinate Descent: Steepest descent w.r.t. ℓ_1

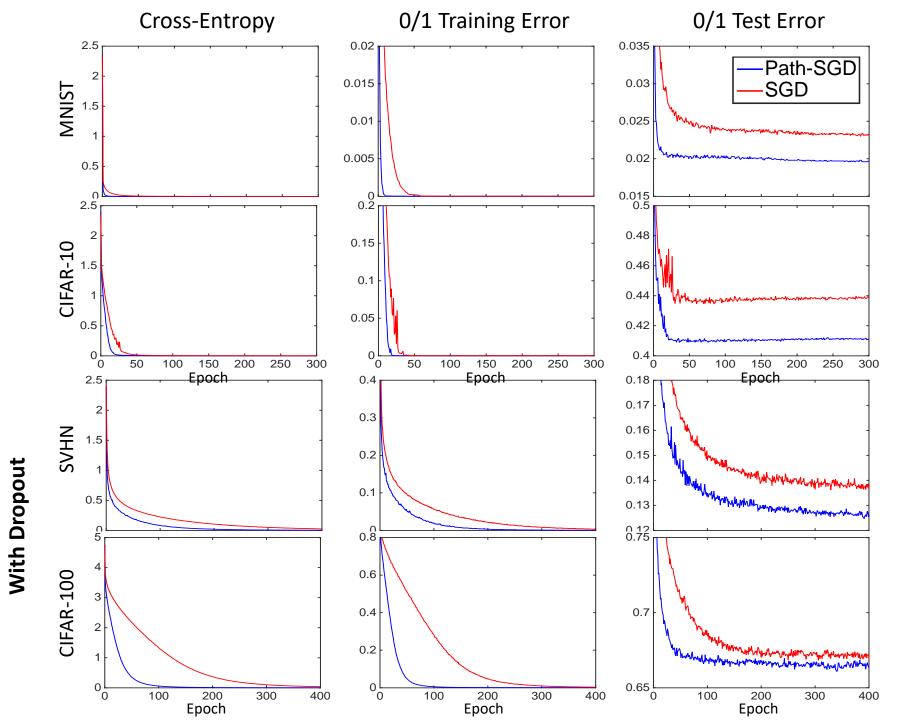
What's the geometry appropriate for deep networks?

Better Geometry

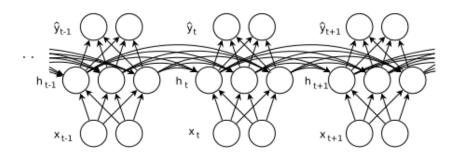
- Can we devise a better geometry?
- More directly dependent on the functions computed by the network, not the vector of weights
- Invariant to rescaling / reparametrization
- Captures a natural notion of complexity for deep networks



✓ As fast as a forward-backward step on a single data point ☺
 [Neyshabur Salakhudtinov S NIPS'15]

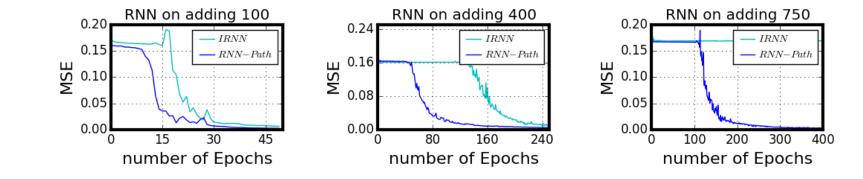


Recurrent Neural Networks



- Sequence to sequence learning architecture
 - Translations, parsing, speech
- Notoriously hard to train: large effective depth and repeated weights
 - With saturating activations (sigmoid, tanh, ramp) : gradient decay
 - With unbounded activation (ReLU): weight explosion
- Most empirical success is with LSTMs, GRUs
 - Different, more complicated architecture
 - Saturating activations, but "short circuits" gradient paths
 - Is this more complicated modeling really necessary?
- Instead: Path SGD to plain vanilla ReLU RNNs

Path-SGD on RNNs



	Penn Tree-Bank	Text8
Plain ReLU SGD	1.55	1.65
Plain ReLU Path-SGD	1.47	1.58
LSTM	1.41	1.52
%gap to LSTM bridged	57%	53%

[Neyshabur Wu Salakhudtinov S 2016]

Building a Circumstantial Case

- Generalization ability
 - Optimization biases us toward "low norm" ???
 - "low norm" ensures generalization [Neyshabur S Tomioka COLT15]
- Expressive Power / Approximation
 - "being representable by a low-norm NN"
- Computation / Optimization
 - Magic property of reality that makes local search "work" ???
 "being representable by a low-norm NN" ???

The Mysteries of Local Search (Gradient Descent and Relatives)

- How come local search succeeds in finding a global optimum of a non-convex function?
- How does gradient descent bias us towards low norm solutions? What norm?

Non-Convex Optimization: Low Rank Matrix Factorization

$$\min_{rank(X) \le r} \|\mathcal{A}(X) - y\|_{2}^{2} = \sum_{i=1}^{m} (\langle A_{i}, X \rangle - y_{i})^{2}$$

$$\min_{U \in \mathbb{R}^{n \times r}} f(U) = \|\mathcal{A}(UU^T) - y\|_2^2$$

- Non-convex
 - Rank is non-convex constraint
 - f(U) is non-convex objective
- Focus on noiseless measurements:
 - $y_i = \langle A_i, X^* \rangle$, $rank(X^*) \le k$
 - Goal: recover X*

Recovery with Convex Relaxation

$$X_{SDP}^* = \arg\min_{X} \|\mathcal{A}(x) - y\|_2^2 + \lambda \|X\|_{tr}$$

<u>Definition</u>: A satisfies (δ_r, r) isometry, if for any rank-r X: $(1 - \delta_r) \|X\|_F^2 \le \frac{1}{m} \|\mathcal{A}(X)\|_2^2 \le (1 + \delta_r) \|X\|_F^2$

• Satisfied for iid Gaussian A_i with $m = \Omega\left(\frac{nr}{\delta_r^2}\right)$

- If $\delta_{2r} < 1$, then X^* is unique (and so recoverable)
- If $\delta_{4r} < 0.414$, then $X^*_{SDP} = X^*$ [Recht Fazel Parrilo 2007, Candes Recht 2008]

But: Computationally heavy; not what NN do

Global Initialization + Local Search

- Step 1: Initialize X_{init} based on SVD of measurements
- Step 2: Local search starting from $X_{init} = U_{init}U_{init}^T$
 - Alternating minimization [Jain Netrapalli Sunghavi 2012]
 - Gradient Descent on $U_{\rm init}$ [Zang Lafferty 2015, Tu Boczar Simchowitz Soltanolkotabi Recht 2015, Chen Wainwright 2015, Bhojanapalli Kyrillidis Sanghavi 2015]

• If
$$\delta_{2r} \leq O\left(\frac{1}{r}\right)$$
, local search after SVD converges (quickly) to X^*

But:

- SVD does heavy lifting: problem almost convex after SVD
- Not what NN do

Our Result: Local Search Sufficient

[Bhojanapalli Neyshabur S NIPS16]

$$\min_{U \in \mathbb{R}^{n \times r}} f(U) = \|\mathcal{A}(UU^T) - y\|_2^2$$

<u>Theorem</u>: If \mathcal{A} satisfies isometry with $\delta_{2r} \leq 0.2$, then:

- All local minima are global (no spurious local minima)
- All saddle points are strict: $\lambda_{min}(\nabla^2) \leq -\frac{4}{5}\sigma_r(U^*)^2$

<u>Corollary</u>: Starting from random initialization, noisy gradient descent [Ge Huang Jin Yuan 2015] converges to global optimum in $poly\left(\kappa(U^*), \frac{1}{\epsilon}, n\right)$ iterations

(Extensions also to noisy and approximate low-rank)

This is what NN do!

Convex Relaxation Work → Local Search Works

- (this work) Low-rank recovery with linear measurements
 - $\delta_{2r} < 0.2$, i.e. O(nr) iid Gaussian measurements suffice
- [Ge Lee Ma 2016, in parallel] Low-rank Matrix Completion
 - Special type of linear measurements, not isometric
 - Need additional regularization
 - Stricter dependence on $\delta \rightarrow \text{poly}(\mathbf{r})$ same complexity
- Inspired by prior work on rank-1 problems:
 - [Bandeira Boumal Voroninski 2015] community detection
 - [Sun Qu Wright 2015] phase retrieval
- PCA: Non-convex, but no spurious local min [e.g. S Jaakkola 2003]
- "multilayer" PCA: $\min_{W_1, W_2, \dots, W_d} \| \prod W_i X Y \|$ [Kawaguchi 2015]
- Vector sparse problems: [Tropp 2004]

The Second Mystery of Local Search

- How can we get implicit regularization without early stopping?
- How does gradient descent bias us towards low norm solutions? What norm?

Warm-up: Least Squares

• Consider an under-constraint least-squares problem (n < m): $\min_{w \in \mathbb{R}^d} \|Ax - y\|^2$

 $A \in \mathbb{R}^{m \times n}$

 Claim: Gradient Descent (or SGD, or conjugate gradient descent, or BFGS) converges to the least norm solution
 min ||x||₂
 Ax=y

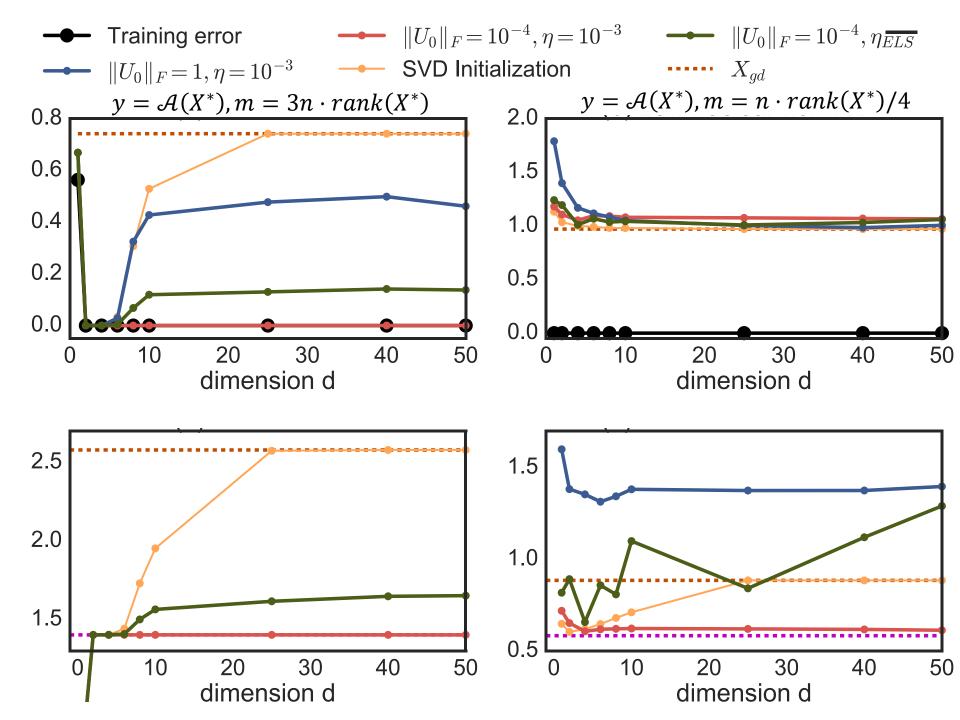
 \succ Proof: iterates always spanned by rows of A

Gradient Descent on Factorization

$$\min_{U \in \mathbb{R}^{n \times n}} f(U) = \|\mathcal{A}(UU^T) - y\|_2^2$$

This time:

- Any linear operator \mathcal{A} (incoherent, non-incoherent, matrix completion, etc)
- Allow high-dimensional U, i.e. unconstrained high rank $X = UU^T$
- Underdetermined problem, $m < \frac{n(n+1)}{2}$
- GD will typically converge to global min $A(UU^T) = y$
- But there are many global min. Which one??



Conjecture (informal): With small enough steps and starting close enough to zero, gradient descent on U converges to minimum nuclear norm solution:

$$UU^{\top} \to \min_{X \ge 0} \|X\|_* \ s.t.\mathcal{A}(X) = y$$

Gradient descent with infinitesimal stepsize:

$$\dot{U}_t = \frac{dU_t}{dt} = -\nabla_U f(U_t) = -\mathcal{A}^* (\mathcal{A}(U_t U_t^{\mathsf{T}}) - y) U_t = -\mathcal{A}^* (r_t) U_t$$

solutions on $X_t = U_t U_t^{\mathsf{T}}$:

Induces dynamics on $X_t = U_t U_t^{\dagger}$:

$$\dot{X}_t = \dot{U}_t U_t^{\mathsf{T}} + U_t^{\mathsf{T}} \dot{U}_t = -\mathcal{A}^*(r_t) \quad X_t \quad - \quad X_t \quad \mathcal{A}^*(r_t)$$

Dynamics independent on choice of factorization (not so with finite stepsize!)

For initial X_0 define $X_{\infty}(X_0) = \lim_{t \to \infty} X_t$

Conjecture: For any full rank
$$\tilde{X}$$
, if $X_{limt} = \lim_{\alpha \to 0} X_{\infty}(\alpha \tilde{X})$
converges to a global min with $\mathcal{A}(X_{limit}) = y$ then:
 $X_{limit} \in \arg\min_{X \ge 0} ||X||_* \ s.t. \ \mathcal{A}(X) = y$

Conjecture: For any full rank \tilde{X} , if $X_{limt} = \lim_{\alpha \to 0} X_{\infty}(\alpha \tilde{X})$ converges to a global min with $\mathcal{A}(X_{limit}) = y$ then: $X_{limit} \in \arg \min_{X \ge 0} ||X||_* \ s.t. \ \mathcal{A}(X) = y$

- Can prove conjecture when A_i s commute
 - → Corollary: Consider non-negative vector least square problem $\min_{x \in \mathbb{R}^n_+} ||Ax - y||_2^2$ optimizing by gradient descent on $u \in \mathbb{R}^n$ with $x_i = u_i^2$. If we start at $u_0 = \alpha \mathbf{1}$, as $\alpha \to 0$, grad flow converges to min ℓ_1 norm solution: $\arg\min_x ||x||_1 \ s.t. \ Ax = y$
- General A_i: empirical validation + hand waving

Warm Up: Gradient Descent on X

$$\min_{X \in \mathbb{R}^{n \times n}} F(X) = \|\mathcal{A}(X) - y\|_2^2$$

Claim: Starting at $X_0 = 0$, gradient descent on X converges to $\min_X ||X||_F \quad s.t. \quad \mathcal{A}(X) = y \quad (*)$

Proof:

- X_t stays on $\mathcal{M} = span(A_i) = \{X = \mathcal{A}^*(s) = \sum_i s_i A_i | s \in \mathbb{R}^m\}$ Reason: gradients $\nabla_X F(X)$ are tangent to \mathcal{M}
- Consider KKT of (*):

$$\mathcal{A}(X) = y \qquad \qquad \mathcal{A}^*(\nu) = X$$

holds at global min $\qquad \qquad \text{satisfied for all } X \in \mathcal{M}$

- Conclusion: if GD converges to global min (and it will), we optimize (*)
- Since $\mathcal M$ is flat: holds also with finite step size, conjugate GD, momentum

GD on U, single observation (m=1)

$$\dot{X}_t = -r_t (AX_t + X_t A)$$

• Solution:

$$X_t = e^{s_t A} X_0 e^{s_t A} \qquad \qquad s_t = -\int r_t dt$$

• Consider:

$$\min_{X \ge 0} \|X\|_* \ s. t. \langle A, X \rangle = y \tag{(*)}$$

• KKT:

 $X \ge 0 \qquad AX = y \qquad X = \nu AX \qquad \nu A \preccurlyeq I$

As X₀ → 0, s_∞ → ∞ and so only dominant eigenvectors of A survive
→ X_∞ spanned by eigen vectors of A with eigen value λ_{max}(A)
→ X_∞ = νAX_∞ with ν = 1/λ_{max}(A)
→ If also AX = y, we found an optimum to (*)

What we can prove: commutative A_i

$$\dot{X}_t = -(\mathcal{A}^*(r_t)X_t + X_t\mathcal{A}^*(r_t))$$

• Solution:

$$X_t = e^{\mathcal{A}^*(s_t)} X_0 e^{\mathcal{A}^*(s_t)} \qquad s_t = -\int r_t dt \in \mathbb{R}^m$$

• Consider:

$$\min_{X \ge 0} \|X\|_* \text{ s.t. } \mathcal{A}(X) = y \tag{(*)}$$

• KKT:

$$X \ge 0$$
 $\mathcal{A}(X) = y$ $X = \mathcal{A}^*(v)X$ $\mathcal{A}^*(v) \le I$

• As $X_0 \to 0$ and $s \to \infty$ only dominant eigenvectors of $\mathcal{A}^*(s/||s||)$ survive $\Rightarrow X_{\infty} = \mathcal{A}^*(v)X_{\infty}$ satisfied with $v = s/\lambda_{max}(\mathcal{A}^*(s))$

→ If also $\mathcal{A}(X) = y$, we found an optimum to (*)

What we can prove: commutative A_i

$$\dot{X}_t = - \big(\mathcal{A}^*(r_t) X_t + X_t \mathcal{A}^*(r_t) \big)$$

Theorem: If A_i commute $(A_iA_j = A_jA_i)$, then for any full rank \tilde{X} , if $X_{limt} = \lim_{\alpha \to 0} X_{\infty}(\alpha \tilde{X})$ is a global min with $\mathcal{A}(X_{limit}) = y$ then: $X_{limit} \in \arg\min_{X \ge 0} ||X||_* \text{ s.t. } \mathcal{A}(X) = y$

- Independent of "steering" r_t —just need to stay on: $\mathcal{M} = \{X = e^{\mathcal{A}^*(s)} X_0 e^{\mathcal{A}^*(s)} | s \in \mathbb{R}^m\}$
- E.g., can minimize other loss, use weights, or sample A_i
- But finite steps, as well as (infinitesimal) momentum, will fall off \mathcal{M} !

Corollary: Consider non-negative vector least square problem $\min_{x \in \mathbb{R}^n_+} ||Ax - y||_2^2$

optimizing by gradient descent on $u \in \mathbb{R}^n$ with $x_i = u_i^2$. If we start at $u_0 = \alpha \mathbf{1}$, as $\alpha \to 0$, grad flow converges to min ℓ_1 norm solution: $\arg\min_x ||x||_1 \ s.t. \ Ax = y$

The Non-Commutative Case $\dot{X}_t = -(\mathcal{A}^*(r_t)X_t + X_t\mathcal{A}^*(r_t))$

• Solution given by "time ordered exponential":

$$X_{t} = \left(\lim_{\epsilon \to 0} \prod_{\tau=t/\epsilon}^{0} e^{-\epsilon \mathcal{A}^{*}(r_{\tau})}\right) X_{0} \left(\lim_{\epsilon \to 0} \prod_{\tau=0}^{t/\epsilon} e^{-\epsilon \mathcal{A}^{*}(r_{\tau})}\right)$$

- With arbitrary (crazy) steering, can move in any direction and get to any psd matrix (even with m = 2 random measurement matrices)
- Empirically, with residual steering, or other "smooth", non-crazy steering, if we move far away form $X_0 \approx 0$, X_t does satisfy the dual condition
- Possible approach: if steering is "non-crazy" (total variations converge as integral diverges), non-commutative terms are lower order and directions not spanned by leading eigenvectors of $\mathcal{A}^*(\int r_t dt)$ vanish.

