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What is “Machine Learning”?

“Machine Learning” as an Engineering Paradigm: Use data 
and examples, instead of expert knowledge, to automatically 

create systems that perform complex tasks



Generic Learning

Learning
Algorithm

Examples of faces Face recognizer

Sample emails Spam detector

Spanish and English texts Translation system

Recorded transliterated audio Speech recognizer

Sensor recordings Particle identification

Parameterized 
model of a face

Examples of faces
“Correct” parameters 
(distribution of dist between eyes, 
importance of different parts, etc)

Examples of bicycles Bike detectors



The ability to learn grammars is hard-wired into 
the brain.  It is not possible to “learn” linguistic 

ability—rather, we are born with a brain 
apparatus specific to language representation.

There exists some “universal” learning 
algorithm that can learn anything: language, 

vision, speech, etc.  The brain is based on it, and 
we’re working on uncovering it. (Hint: the brain 

uses neural networks)

There is no “free lunch”: no learning is possible 
without some prior assumption about the 

structure of the problem (prior knowledge)

Noam Chomsky

Geoff Hinton

David 
Wolpert



Machine Learning

More Data, Less Expert Knowledge

Expert knowledge:
full specific knowledge none

Expert Systems
(no data at all)

Use data to fit 
specific model

no free lunch

more data 



Data

System for 
Performing Task 
(e.g. Predictor)

• 99% of faces have 
two eyes

• People with beards 
buy less nail polish

• …

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 2

∝ 𝑎𝑣𝑔 𝑟𝑎𝑑𝑖𝑢𝑠 3

NP  adj NP
NP  det N
det ‘the’

Does smoking contribute to 
lung cancer?
• Yes, with p-value = 10−72

How long ago did cats and 
dogs diverge?
• About 55 MY, with 95% 

confidence interval [51,60]

“Machine Learning”: Use data and examples, instead of expert 
knowledge, to automatically create systems that perform complex tasks

Eilam



• Optimization for learning:
• Modeling: Choose hypothesis class and/or regularizer

• Optimization: Optimize empirical objective (on training data)

෠ℎ = argmin
ℎ∈ℋ

1

𝑛
෍

𝑖=1

𝑛

𝑙𝑜𝑠𝑠 ℎ 𝑥𝑖 , 𝑦𝑖 + 𝑅𝑒𝑔(ℎ)

• Statistics: If ℋ small or 𝑅𝑒𝑔 ℎ low, ෠ℎ also has low generalization error

• Stochastic optimization (eg SGD) for learning:
𝑤 𝑡+1 ← 𝑤 𝑡 − 𝜂𝑡𝛻𝑤𝑙𝑜𝑠𝑠 ℎ𝑤 𝑡 𝑥𝑖𝑡 , 𝑦𝑖𝑡

• Learning is (stochastic) optimization:
min
ℎ

𝐸𝑥,𝑦~𝒟[𝑙𝑜𝑠𝑠 ℎ 𝑥 , 𝑦 ]

based on sample 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 ~𝒟

Learning and Optimization



Stochastic Optimization Setting

min
𝑤∈𝒲

𝐹(𝑤)

based only on stochastic information on 𝐹
• Only unbiased estimates of 𝐹 𝑤 , 𝛻𝐹(𝑤)

• No direct access to 𝐹

E.g., fixed 𝑓(𝑤, 𝑧) but 𝒟 unknown
• Optimize 𝐹(𝑤) based on iid sample 𝑧1, 𝑧2, … , 𝑧𝑚~𝒟

• 𝑔 = 𝛻𝑓(𝑤, 𝑧𝑡) is unbiased estimate of 𝛻𝐹 𝑤

• Traditional applications
• Optimization under uncertainty

• Uncertainty about network performance

• Uncertainty about client demands

• Uncertainty about system behavior in control problems

• Complex systems where its easier to sample then integrate over 𝑧

= 𝔼𝑧~𝒟[𝑓 𝑤, 𝑧 ]



min
ℎ

𝔼𝑧∼𝒟[𝑓 ℎ, 𝑧 ]

• Supervised learning: 𝑧 = 𝑥, 𝑦
ℎ specifies a predictor ℎ:𝒳 → 𝒴
𝑓(ℎ; (𝑥, 𝑦) ) = 𝑙𝑜𝑠𝑠(ℎ(𝑥), 𝑦)

• k-means clustering: 𝑧 = 𝑥 ∈ ℝ𝑑

ℎ = (𝜇 1 , 𝜇 2 ,… , 𝜇 𝑘 ) specify 𝑘 centers
𝑓 𝜇 1 , 𝜇 2 ,… , 𝜇 𝑘 ; 𝑥 = min

𝑗
𝜇 𝑗 − 𝑥 2

• Density estimation: ℎ specifies probability density 𝑝ℎ(𝑥)
𝑓(ℎ; 𝑥) = −log 𝑝ℎ(𝑥)

• More general learning: 𝑧 = traffic delays on each road segment
ℎ = route chosen (indicator over road segments)
𝑓 ℎ; 𝑧 = ⟨𝑧, ℎ⟩ = total delay along route

Stochastic Optimization

Valdimir
Vapnik

Arkadi
Nemirovskii

Optimization Statistics COLT NIPS

𝑥 𝛽 ℎ 𝑤

≡ “Generalized Learning” 



•Focus on computational efficiency

•Generally assumes unlimited sampling
- as in monte-carlo methods for 
complicated objectives

•Optimization variable generally a 
vector in a normed space
- complexity control through norm

•Mostly convex objectives

Stochastic Optimization

•Focus on sample size

•What can be done with a fixed 
number of samples?

•Abstract hypothesis classes
- linear predictors, but also combinatorial 
hypothesis classes
- generic measures of complexity such as 
VC-dim, fat shattering, Radamacher

• Also non-convex classes and loss 
functions

Statistical Learningvs

Valdimir
Vapnik

Arkadi
Nemirovskii



Two Approaches to 
Stochastic Optimization / Learning

min
𝑤∈𝒲

𝐹(𝑤) = 𝔼𝑧~𝒟[𝑓 𝑤, 𝑧 ]

• Empirical Risk Minimization (ERM) 
/ Sample Average Approximation (SAA):
• Collect sample z1,…,zm

• Minimize 𝐹𝑆 𝑤 =
1

𝑚
σ𝑖 𝑓 𝑤, 𝑧𝑖

• Analysis typically based on Uniform Concentration

• Stochastic Approximation (SA): [Robins Monro 1951]

• Update 𝑤 𝑡 based on 𝑧𝑡
• E.g., based on 𝑔 𝑡 = 𝛻𝑓(𝑤, 𝑧𝑡)

• Simplest method: stochastic gradient descent

• Similar to online approach in learning (more on this later)



Why is this important?
• Borrowing ideas and techniques, merging of communities

• Understanding optimality (in terms of sample complexity and
runtime) of stochastic approximation algorithms
• SGD optimal for SVM-type problems

• Mirror Descent optimal* for any** convex problem

• Understanding how optimization algorithm can guarantee 
generalization directly, providing implicit inductive bias 
(regularization) without explicitly specifying hypothesis class / 
regularizer / model:

𝑤 𝑡+1 ← 𝑤 𝑡 − 𝜂𝛻𝑙𝑜𝑠𝑠(𝑤 𝑡 , (𝑥𝑡 , 𝑦𝑡))

⇒ 𝔼 𝑙𝑜𝑠𝑠 𝑤 𝑡 ≤ 𝔼 𝑙𝑜𝑠𝑠 𝑤∗ +
𝑤∗ 2 𝑥 2

𝑡

• Emphasize importance of computational aspects



Machine Learning

• We want model classes (hypothesis classes) that:
• Are expressive enough to capture reality well

• Have small enough capacity to allow generalization

• Use “expert knowledge” to design small model class 
that capture relevant reality well

reality



Free Lunches

• No Free Lunch: For any learning rule, there exists a source (i.e. 
reality), for which the learning rule yields expected error ½
• If we try learning all possible hypothesis (take model class to be all possible 

functions), estimation is impossible

• Must introduce inductive bias / prior knowledge

• Universal Learning (Free Lunch):
• “Universal” inductive bias, captures anything we might want to learn

ℋtime 𝑇 = 𝑎𝑙𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑇

ℋdesc−length 𝐿 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 𝑏𝑦 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝐿

• Sample complexity ∝ 𝑇 or ∝ 𝐿

• If there isn’t an efficient program (no way to perform task efficiently), no 
point in “learning” how to perform task



Minimum Description Length Learner

• Task: predict 𝑦 from 𝑥

• Input: labeled training set 𝑆 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … }

• Return shortest program 𝑝: 𝑥 ↦ 𝑦 s.t.

𝑝 𝑥𝑖 = 𝑦𝑖 for all 𝑥𝑖 , 𝑦𝑖 ∈ 𝑆



Minimum Description Length (Noisy)

• Task: predict 𝑦 from 𝑥
• Input: labeled training set 𝑆 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … }

• Split training set to 𝑆𝑡𝑟 , 𝑆𝑣𝑎𝑙
• For each length 𝐿:

• ℎ𝐿 = program 𝑝: 𝑥 ↦ 𝑦 of length 𝑝 ≤ 𝐿 with 
minimum error on 𝑆𝑡𝑟

• Return ℎ𝐿 with minimum error on 𝑆𝑣𝑎𝑙

• “Universal Learner”: learns any poly-time function to within any 
error with polynomial sample complexity

• Theoretically: only a constant more training examples compared 
to any programmable learning rule

• “In Practice”: beats your (and anybody else’s) learning method



No Free Lunch After All…

• Problem: “find shortest program consistent with 𝑆”, or 
“find program of length ≤ 𝐿 minimizing training error” 
is not computable

• Also “find short program consistent with 𝑆 and with 
short run time on 𝑆” is NP-hard

• Not only NP-hard, its really really really hard.

• In fact, Universal Learning is hopeless:
Unless crypto collapses, there is no polytime learning algorithm that can learn 
“functions computable in time T”
• i.e. even if we know ∃ time-T function with zero error, we can’t even ensure error 

< ¼ in poly-time

• Machine Learning Challenge
• Expressive power: capture reality well
• Low capacity: generalize well, low sample complexity
• Computationally efficient



Hypothesis Class of
Feed Forward Neural Networks

• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Expressive Power / Approximation:
• What functions can we represent/approximate?

• Does ℋ “capture reality” well?

• Estimation:
• What is the capacity / VC-dimension of ℋ ?

• How well do we generalize to new data if we choose weights 
that minimize error on training data

• How many samples do we need in order to generalize?

• Computation



Sample Complexity of NN

• #params = |𝐸| (number of weights we need to learn)

• More formally: 𝑉𝐶𝑑𝑖𝑚 ℋ𝐺 𝑉,𝐸 ,𝑠𝑖𝑔𝑛 = 𝑂( 𝐸 log 𝐸 )

• Other activation functions?

• 𝑉𝐶𝑑𝑖𝑚 ℋ𝐺(𝑉,𝐸),sin = ∞ even with single unit and single real-valued input

• 𝑉𝐶𝑑𝑖𝑚 ℋ𝐺(𝑉,𝐸),RELU = ෩Θ( 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• With finite precision (or a bit of regularization):

𝑉𝐶𝑑𝑖𝑚 ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑂( 𝐸 )

• Bottom line: |𝑬| (number of weights) controls sample complexity



What can Feed-Forward Networks Represent?

• Any function over 𝒳 = ±1 𝑑

• With a single hidden layer, using DNF (hidden layer does AND, output does 
OR)

• 𝑉 = 2𝑑, 𝐸 = 𝑑2𝑑

• Like representing the truth table directly…

• Universal Representation Theorem: Any continuous functions 
𝑓: 0,1 𝑑 → ℝ can be approximated to within any 𝜖 by a feed-forward 
network with sigmoidal (or almost any other) activation and a single 
hidden layer.
• Size of layer exponential in d

• Compare: With a large enough #params (large enough #features, 
small enough margin) even a linear model can approximate any 
continuous function arbitrary well (e.g. using Gaussian kernel)



What can SMALL Networks Represent?

• Intersection of halfspaces
• Using single hidden layer

• Union of intersection of halfspaces (and also sorting, more fun 
stuff, …)
• Using two hidden layers



What can SMALL Networks Represent?

• Intersection of halfspaces
• Using single hidden layer

• Union of intersection of halfspaces (and also sorting, more fun stuff, …)
• Using two hidden layers

• Everything we want:
𝑓 𝑓 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑇 } ⊆ ℋ𝐺 𝑉,𝐸 ,𝜎

with 𝐸 = ෨𝑂 𝑇

⇒ Universal Learning (learn anything computable in time 𝑇) 
with 𝑝𝑜𝑙𝑦(𝑇) samples

• Compare: to get “universal approximation” with linear models / kernels, 
margin must shrink (and #features must grow) exponentially

sign, sigmoidal 
or ReLU



Optimization
𝐸𝑅𝑀 𝑆 = argmin

𝑤
𝐿𝑆 𝑓𝑤

• Highly non-convex problem, even if 𝑙𝑜𝑠𝑠 and activation 𝜎 are convex

• NP-Hard even with single hidden layer and three hidden units

• Not surprising: otherwise, can learn hypothesis class of all poly-time functions

• Conclusion: Under crypto assumptions, no algorithm for learning ℋ𝐺 𝑉,𝐸 ,𝜎 in 

time 𝑝𝑜𝑙𝑦 𝐸

• In fact, even two-layer networks are hard:
For 𝑥 ∈ ℝ𝑑, and binary labels generated by two-layer network with log(𝑑)
hidden units, no poly-time learning algorithm ensuring error < ¼ 
• Even in noiseless case (labels exactly follow small two-layer network)

• Even if algorithm allowed to use much larger network (or any type of predictor)

[Kearns Valiant ‘94, log(𝑑)-depth;  Klivans Sherstov ’06, two-layer 𝑂(𝑑) units;
Daniely Linial Shalev-Shwartz ’14, log(𝑑) units]



Choose your universal learner:

Short Programs

• Universal
• Captures anything we want 

with reasonable sample 
complexity

• NP-hard to learn

• Hard to optimize in practice
• No practical local search
• Highly non-continuous, 

disconnected discrete space
• Not much success

Deep Networks

• Universal
• Captures anything we want 

with reasonable sample 
complexity

• NP-hard to learn

• Often easy to optimize
• Continuous
• Amenable to local search, 

stochastic local search
• Lots of empirical success



Theory of Neural Network Learning:
Interim Summary

• Expressive Power
• Universal, all poly-time functions

• Capacity Control (Sample Complexity)
• ∝ number of weights

• Optimization

?????

Not: “what about reality is captured by my NN architecture”

Rather: “what about reality makes it easy to optimize my NN”

“its easy to optimize my NN on real data, 
because real data has such and such properties”



You want convexity?

• Consider learning with a hypothesis class ℋ = ℎ:𝒳 → ℝ
෠𝐿 ℎ = Σ𝑡𝑙𝑜𝑠𝑠(ℎ 𝑥𝑡 ; 𝑦𝑡)

• With any meaningful loss, ෠𝐿(ℎ𝑤) can be convex in a 
parameterization 𝑤, only if 𝒉𝒘(𝒙) is affine in 𝒘, i.e.

ℎ𝑤 𝑥 = 𝑤,𝜙 𝑥 + 𝜙0(𝑥)

• Rich variety of learning problems obtained with different 
(sometimes implicit) choices of linear hypothesis classes,
feature mappings Á, and loss functions.

(For 0/1 error, which is what we really care about, even linear learning
is non-convex, NP-hard to optimize, and crypto-hard to learn)

Shallow
Learning



deep

convex:
shallow
linear

Matrix Factorization
(two layer, linear transfer)



Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶( 𝑬 ) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ depth )

• Expressive Power / Approximation

• Lots of interesting things naturally with small networks

• Any 𝑻 computable function with network of size ෩𝑶(𝑻)

• Computation / Optimization

• Even if function exactly representable with single hidden layer with 
Θ log𝑑 units, even with no noise, and even if we allow a much larger 
network when learning: no poly-time algorithm always works
[Kearns Valiant 94;  Klivans Sherstov 06; Daniely Linial Shalev-Shwartz ’14]

• Magic property of reality that makes local search “work”



Feed-Forward Neural Networks
(The Multilayer Perceptron)

𝑣1

𝑣2

𝑣3

𝑣𝑑
𝑢

𝑣

𝑣𝑜𝑢𝑡

Architecture:

• Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.

• “Input Units” 𝑣1…𝑣𝑑 ∈ 𝑉, with no incoming edges and 𝑜 𝑣𝑖 = 𝑥[𝑖]

• “Output Unit” 𝑣𝑜𝑢𝑡 ∈ 𝑉, ℎ𝑤 𝑥 = 𝑜 𝑣𝑜𝑢𝑡

• “Activation Function” 𝜎:ℝ → ℝ. E.g. 𝜎𝑅𝐸𝐿𝑈 𝑧 = 𝑧 +

Parameters:

• Weight 𝑤[𝑢 → 𝑣] for each edge 𝑢 → 𝑣 ∈ 𝐸

𝑎[𝑣] = ෍

𝑢→𝑣∈𝐸

𝑤[𝑢 → 𝑣] 𝑜[𝑢]

𝑜 𝑣 = 𝜎( 𝑎 𝑣 )

𝑥[1]

𝑥[2]

𝑥[3]

𝑥[𝑑]

⋯

ℎ𝐺 𝑉,𝐸 ,𝜎,𝑤 𝑥



Increasing the Network Size
(Number of Hidden Units)

[Neyshabur Tomioka S ICLR’15]



Increasing the Network Size
(Number of Hidden Units)

[Neyshabur Tomioka S ICLR’15]



Increasing the Network Size
(Number of Hidden Units)

[Neyshabur Tomioka S ICLR’15]



Feed Forward Neural Networks

• Capacity / Generalization ability

• Expressive Power / Approximation

• Computation / Optimization



Two Layer Networks with Linear Transfer
(aka Matrix Factorization)

𝑥[1]

𝑥[2]

𝑥[3]

𝑥[𝑑]

⋯

𝑦 𝑗 = σ𝑢 𝑘, 𝑗 𝑧 𝑘

𝑦 = 𝑈 𝑉𝑥 = 𝑊𝑥

𝑊 = 𝑈𝑉

𝑟 hidden units ⇔ 𝑟𝑎𝑛𝑘 𝑊 ≤ 𝑟



Norm-Bounded Factorization

• Instead of 𝑟𝑎𝑛𝑘 𝑊 [number of hidden units]
consider 𝑊 𝑡𝑟 = min

𝑊=𝑈𝑉
𝑈 𝐹𝑟𝑜 𝑉 𝐹𝑟𝑜 [magnitude of weights]

(or other factorization norms such as weighted trace norm, max-norm 
aka 𝛾2: 1 → ∞ norm, etc) 

• Convex, easier to optimize, no spurious local minima in high enough 
dimension even when optimizing over 𝑈, 𝑉

• But also: better inductive bias

• Richer and more expressive model, allowing unbounded number 
of factors.

• Infinite factor model with bound sum of “importance” of factors, 
not their number



Increasing the Rank

𝑊𝑘 = arg min
𝑟𝑎𝑛𝑘 𝑊 ≤𝑘

𝑊 𝑡𝑟 s.t. 𝐿 𝑊 = 0

• 𝑟𝑎𝑛𝑘(𝑊𝑘) increases with k
more complex in terms of rank

• 𝑊𝑘 𝑡𝑟 decreases with k
 simpler in terms of norm

• If norm is better “inductive bias”, 𝑊𝑘 generalizes better as 𝑘 ↗

• In practice, for many tasks (including NetFlix)
𝑊𝑘 = argmin

𝑊
𝐿 𝑊 + 𝜆 𝑊 𝑡𝑟 𝑠. 𝑡. 𝑟𝑎𝑛𝑘 𝑊 = 𝑘

Test error of 𝑊𝑘 monotonically decreases as 𝑘 ↗
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Is improved Generalization 
explained by Decrease in Norm?

Norm = 𝑊 2 = σ𝑒𝑤 𝑒 2



𝑊 2 doesn’t capture complexity
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The Path-Norm

𝜙 𝑊 = ෍

path

ෑ

𝑒∈path

𝑤 𝑒 2

With ReLU activations:

• Invariant to “weight balancing”  depends more directly on 𝑓𝑊

• Bounding the path-norm provides capacity control and ensures 
generalization, independent of #units (and even if #units unbounded)



The Path-Norm

𝜙 𝑊 = ෍

path

ෑ
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𝑤 𝑒 2

With ReLU activations:

• Invariant to “weight balancing”  depends more directly on 𝑓𝑊

• Bounding the path-norm provides capacity control and ensures 
generalization, independent of #units (and even if #units unbounded)
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The Path-Norm

𝜙 𝑊 = ෍

path

ෑ

𝑒∈path

𝑤 𝑒 2

With ReLU activations:

• Invariant to “weight balancing”  depends more directly on 𝑓𝑊

• Bounding the path-norm provides capacity control and ensures 
generalization, independent of #units (and even if #units unbounded)
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Where is the Regularization?
• What we did: minimize unregularized error to convergence

• In convex models, we understand how one-pass SGD (or with early 
stopping) provides for implicit ℓ2 regularization
• More generally, one-pass Mirror Descent provides generalization w.r.t. any* 

inductive bias

• Inductive Bias  choice of potential for Mirror Descent

• We are getting implicit regularization, without early stopping

• In underdetermined problem (lots of global optima), optimization 
is biasing us toward specific global optimum.

• What’s the bias introduced by the optimization?

• Can we get better bias by changing optimization?



Optimization is Tied to
Choice of Geometry

Steepest descent w.r.t. a geometry:

𝑤(𝑡+1) = arg min
𝑤

𝜂 𝛻L w 𝑡 , 𝑤 + 𝛿 𝑤 𝑡+1 , 𝑤

✓improve the objective as much as possible

✓only a small change in the model.

Examples:

• Gradient Descent: Steepest descent w.r.t ℓ2
• Coordinate Descent: Steepest descent  w.r.t. ℓ1

What’s the geometry appropriate for deep networks?



Better Geometry

• Can we devise a better geometry?

• More directly dependent on the functions 
computed by the network, not the vector of 
weights

• Invariant to rescaling / reparametrization

• Captures a natural notion of complexity for deep 
networks



Path-SGD:
(Approximate) Steepest Descent on 𝜙 𝑊

𝜅𝑒 𝑤 = ෍

path
via 𝑒

ෑ

𝑒′∈path

𝑤 𝑒′ 2

𝑤𝑒
(𝑡+1)

= w𝑒
𝑡
−

𝜂

𝜅𝑒 𝑤 𝑡

𝜕𝐿

𝜕𝑤(𝑒)
𝑤 𝑡

✓As fast as a forward-backward step on a single data point ☺
[Neyshabur Salakhudtinov S NIPS’15]

𝜙 𝑊 = ෍

path

ෑ

𝑒∈path

𝑤 𝑒 2



Cross-Entropy 
Training Loss
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Recurrent Neural Networks

• Sequence to sequence learning architecture
• Translations, parsing, speech

• Notoriously hard to train: large effective depth and repeated weights
• With saturating activations (sigmoid, tanh, ramp) : gradient decay
• With unbounded activation (ReLU): weight explosion

• Most empirical success is with LSTMs, GRUs
• Different, more complicated architecture
• Saturating activations, but “short circuits” gradient paths
• Is this more complicated modeling really necessary?

• Instead: Path SGD to plain vanilla ReLU RNNs



Path-SGD on RNNs

Penn Tree-Bank Text8

Plain ReLU SGD 1.55 1.65

Plain ReLU Path-SGD 1.47 1.58

LSTM 1.41 1.52

%gap to LSTM bridged 57% 53%

[Neyshabur Wu Salakhudtinov S 2016]



Building a Circumstantial Case
• Generalization ability

• Optimization biases us toward “low norm”

• “low norm” ensures generalization [Neyshabur S Tomioka COLT15]

• Expressive Power / Approximation

• “being representable by a low-norm NN”

• Computation / Optimization

• Magic property of reality that makes local search “work” ???
“being representable by a low-norm NN” ???

???



The Mysteries of Local Search
(Gradient Descent and Relatives)

• How come local search succeeds in finding a global 
optimum of a non-convex function?

• How does gradient descent bias us towards low 
norm solutions?  What norm?



Non-Convex Optimization:
Low Rank Matrix Factorization

min
𝑟𝑎𝑛𝑘 𝑋 ≤𝑟

𝒜 𝑋 − 𝑦 2
2 =෍

𝑖=1

𝑚

𝐴𝑖 , 𝑋 − 𝑦𝑖
2

min
𝑈∈ℝ𝑛×𝑟

𝑓 𝑈 = 𝒜 𝑈𝑈𝑇 − 𝑦 2
2

• Non-convex
• Rank is non-convex constraint

• 𝑓(𝑈) is non-convex objective

• Focus on noiseless measurements:

• 𝑦𝑖 = 〈𝐴𝑖 , 𝑋
∗〉,  𝑟𝑎𝑛𝑘 𝑋∗ ≤ 𝑘

• Goal: recover 𝑋∗



Recovery with Convex Relaxation

𝑋𝑆𝐷𝑃
∗ = arg min

𝑋
‖𝒜 𝑥 − 𝑦‖2

2 + 𝜆 𝑋 𝑡𝑟

Definition: 𝐴 satisfies (𝛿𝑟 , 𝑟) isometry, if for any rank-𝑟 𝑋:

1 − 𝛿𝑟 𝑋 𝐹
2 ≤

1

𝑚
𝒜 𝑋 2

2 ≤ 1 + 𝛿𝑟 𝑋 𝐹
2

• Satisfied for iid Gaussian 𝐴𝑖 with 𝑚 = Ω
𝑛𝑟

𝛿𝑟
2

• If 𝛿2𝑟 < 1, then 𝑋∗ is unique (and so recoverable)

• If 𝛿4𝑟 < 0.414, then 𝑋𝑆𝐷𝑃
∗ = 𝑋∗

[Recht Fazel Parrilo 2007, Candes Recht 2008]

But: Computationally heavy; not what NN do



Global Initialization + Local Search
• Step 1: Initialize 𝑋init based on SVD of measurements

• Step 2: Local search starting from 𝑋init = 𝑈init𝑈init
𝑇

• Alternating minimization [Jain Netrapalli Sunghavi 2012]

• Gradient Descent on 𝑈init [Zang Lafferty 2015, Tu Boczar Simchowitz
Soltanolkotabi Recht 2015, Chen Wainwright 2015, Bhojanapalli Kyrillidis Sanghavi
2015]

• If 𝛿2𝑟 ≤ 𝑂
1

𝑟
, local search after SVD converges (quickly) to 𝑋∗

But:

• SVD does heavy lifting: problem almost convex after SVD

• Not what NN do



Our Result: Local Search Sufficient 
[Bhojanapalli Neyshabur S NIPS16]

min
𝑈∈ℝ𝑛×𝑟

𝑓 𝑈 = 𝒜 𝑈𝑈𝑇 − 𝑦 2
2

Theorem: If𝒜 satisfies isometry with 𝛿2𝑟 ≤ 0.2, then:
• All local minima are global (no spurious local minima)

• All saddle points are strict: 𝜆𝑚𝑖𝑛(𝛻
2) ≤ −

4

5
𝜎𝑟 𝑈∗ 2

Corollary: Starting from random initialization, noisy gradient descent 
[Ge Huang Jin Yuan 2015] converges to global optimum in 
𝑝𝑜𝑙𝑦 𝜅 𝑈∗ ,

1

𝜖
, 𝑛 iterations

(Extensions also to noisy and approximate low-rank)

This is what NN do!



Convex Relaxation Work
 Local Search Works

• (this work) Low-rank recovery with linear measurements
• 𝛿2𝑟 < 0.2, i.e. 𝑂(𝑛𝑟) iid Gaussian measurements suffice

• [Ge Lee Ma 2016, in parallel] Low-rank Matrix Completion
• Special type of linear measurements, not isometric
• Need additional regularization
• Stricter dependence on 𝛿 poly(r) same complexity

• Inspired by prior work on rank-1 problems:
• [Bandeira Boumal Voroninski 2015] community 

detection
• [Sun Qu Wright 2015] phase retrieval

• PCA: Non-convex, but no spurious local min [e.g. S Jaakkola
2003]

• “multilayer” PCA: min
𝑊1,𝑊2,…,𝑊𝑑

‖∏𝑊𝑖𝑋 − 𝑌‖ [Kawaguchi 2015]

• Vector sparse problems: [Tropp 2004]



The Second Mystery 
of Local Search

• How can we get implicit regularization without 
early stopping?

• How does gradient descent bias us towards low 
norm solutions?  What norm?



Warm-up: Least Squares

• Consider an under-constraint least-squares problem (𝑛 < 𝑚):
min
𝑤∈ℝ𝑑

‖𝐴𝑥 − 𝑦‖2

𝐴 ∈ ℝ𝑚×𝑛

• Claim: Gradient Descent (or SGD, or conjugate gradient descent, or 
BFGS) converges to the least norm solution

min
𝐴𝑥=𝑦

𝑥 2

➢Proof: iterates always spanned by rows of 𝐴



Gradient Descent on Factorization

min
𝑈∈ℝ𝑛×𝑛

𝑓 𝑈 = 𝒜 𝑈𝑈𝑇 − 𝑦 2
2

This time:

• Any linear operator 𝒜 (incoherent, non-incoherent, matrix 
completion, etc)

• Allow high-dimensional 𝑈, i.e. unconstrained high rank 𝑋 =
𝑈𝑈𝑇

• Underdetermined problem, 𝑚 <
𝑛 𝑛+1

2

• GD will typically converge to global min 𝐴 𝑈𝑈𝑇 = 𝑦

• But there are many global min.  Which one??



𝑦 = 𝒜 𝑋∗ , 𝑚 = 3𝑛 ⋅ 𝑟𝑎𝑛𝑘 𝑋∗ 𝑦 = 𝒜 𝑋∗ , 𝑚 = 𝑛 ⋅ 𝑟𝑎𝑛𝑘 𝑋∗ /4



Conjecture (informal): With small enough steps and starting close enough to 

zero, gradient descent on 𝑈 converges to minimum nuclear norm solution:

𝑈𝑈⊤ → min
𝑋≽0

𝑋 ∗ 𝑠. 𝑡.𝒜 𝑋 = 𝑦

Gradient descent with infinitesimal stepsize:

ሶ𝑈𝑡 =
𝑑𝑈𝑡
𝑑𝑡

= −𝛻𝑈𝑓 𝑈𝑡 = −𝒜∗ 𝒜 𝑈𝑡𝑈𝑡
⊤ − 𝑦 𝑈𝑡 = −𝒜∗ 𝑟𝑡 𝑈𝑡

Induces dynamics on 𝑋𝑡 = 𝑈𝑡𝑈𝑡
⊤:

ሶ𝑋𝑡 = ሶ𝑈𝑡𝑈𝑡
⊤ + 𝑈𝑡

⊤ ሶ𝑈𝑡 = −𝒜∗ 𝑟𝑡 𝑈𝑡𝑈𝑡
⊤ − 𝑈𝑡

⊤𝑈𝑡𝒜
∗(𝑟𝑡)

Dynamics independent on choice of factorization (not so with finite stepsize!)

For initial 𝑋0 define 𝑋∞(𝑋0) = lim
𝑡→∞

𝑋𝑡

𝑟𝑡 = 𝒜 𝑈𝑡𝑈𝑡
⊤ − 𝑦

𝑋𝑡 𝑋𝑡

Conjecture: For any full rank ෨𝑋, if 𝑋𝑙𝑖𝑚𝑡 = lim
𝛼→0

𝑋∞(𝛼 ෨𝑋)

converges to a global min with 𝒜 𝑋𝑙𝑖𝑚𝑖𝑡 = 𝑦 then:

𝑋𝑙𝑖𝑚𝑖𝑡 ∈ argmin
𝑋≽0

𝑋 ∗ 𝑠. 𝑡. 𝒜 𝑋 = 𝑦

𝑋𝑡



• Can prove conjecture when 𝐴𝑖s commute
 Corollary: Consider non-negative vector least square problem

min
𝑥∈ℝ+

𝑛
𝐴𝑥 − 𝑦 2

2

optimizing by gradient descent on 𝑢 ∈ ℝ𝑛 with 𝑥𝑖 = 𝑢𝑖
2.  If we start at 𝑢0 = 𝛼𝟏, 

as 𝛼 → 0, grad flow converges to min ℓ1 norm solution: argmin
𝑥

𝑥 1 𝑠. 𝑡. 𝐴𝑥 = 𝑦

• General 𝐴𝑖: empirical validation + hand waving

Conjecture: For any full rank ෨𝑋, if 𝑋𝑙𝑖𝑚𝑡 = lim
𝛼→0

𝑋∞(𝛼 ෨𝑋)

converges to a global min with 𝒜 𝑋𝑙𝑖𝑚𝑖𝑡 = 𝑦 then:

𝑋𝑙𝑖𝑚𝑖𝑡 ∈ argmin
𝑋≽0

𝑋 ∗ 𝑠. 𝑡. 𝒜 𝑋 = 𝑦



Warm Up: Gradient Descent on X
min

𝑋∈ℝ𝑛×𝑛
𝐹 𝑋 = 𝒜 𝑋 − 𝑦 2

2

Claim: Starting at 𝑋0 = 0, gradient descent on 𝑋 converges to
min
𝑋

𝑋 𝐹 𝑠. 𝑡. 𝒜 𝑋 = 𝑦

Proof:

• 𝑋𝑡 stays on ℳ = 𝑠𝑝𝑎𝑛 𝐴𝑖 = 𝑋 = 𝒜∗ 𝑠 = σ𝑖 𝑠𝑖𝐴𝑖 𝑠 ∈ ℝ𝑚}

Reason: gradients 𝛻𝑋𝐹(𝑋) are tangent to ℳ

• Consider KKT of (*):

𝒜 𝑋 = 𝑦 𝒜∗ 𝜈 = 𝑋

• Conclusion: if GD converges to global min (and it will), we optimize (*)

• Since ℳ is flat: holds also with finite step size, conjugate GD, momentum

(*)

satisfied for all 𝑋 ∈ ℳholds at global min



GD on 𝑈, single observation (m=1)
ሶ𝑋𝑡 = −𝑟𝑡(𝐴𝑋𝑡 + 𝑋𝑡𝐴)

• Solution:

𝑋𝑡 = 𝑒𝑠𝑡𝐴𝑋0𝑒
𝑠𝑡𝐴 𝑠𝑡 = −∫ 𝑟𝑡𝑑𝑡

• Consider:
min
𝑋≽0

𝑋 ∗ 𝑠. 𝑡. 𝐴, 𝑋 = 𝑦

• KKT:

𝑋 ≽ 0 𝐴𝑋 = 𝑦 𝑋 = 𝜈𝐴𝑋 𝜈𝐴 ≼ 𝐼

• As 𝑋0 → 0, 𝑠∞ → ∞ and so only dominant eigenvectors of 𝐴 survive

 𝑋∞ spanned by eigen vectors of 𝐴 with eigen value 𝜆𝑚𝑎𝑥 𝐴

 𝑋∞ = 𝜈𝐴𝑋∞ with 𝜈 = 1/𝜆𝑚𝑎𝑥(𝐴)

 If also 𝐴𝑋 = 𝑦, we found an optimum to (*)

(*)



What we can prove: commutative 𝐴𝑖
ሶ𝑋𝑡 = − 𝒜∗ 𝑟𝑡 𝑋𝑡 + 𝑋𝑡𝒜

∗ 𝑟𝑡

• Solution:

𝑋𝑡 = 𝑒𝒜
∗(𝑠𝑡)𝑋0𝑒

𝒜∗(𝑠𝑡) 𝑠𝑡 = −∫ 𝑟𝑡𝑑𝑡 ∈ ℝ
𝑚

• Consider:
min
𝑋≽0

𝑋 ∗ 𝑠. 𝑡. 𝒜(𝑋) = 𝑦

• KKT:

𝑋 ≽ 0 𝒜(𝑋) = 𝑦 𝑋 = 𝒜∗(𝜈)𝑋 𝒜∗(𝜈) ≼ 𝐼

• As 𝑋0 → 0 and 𝑠 → ∞ only dominant eigenvectors of 𝒜∗ Τ𝑠 𝑠 survive

 𝑋∞ = 𝒜∗ 𝜈 𝑋∞ satisfied with 𝜈 = 𝑠/𝜆𝑚𝑎𝑥 𝒜∗ 𝑠

 If also 𝒜 𝑋 = 𝑦, we found an optimum to (*)

(*)



What we can prove: commutative 𝐴𝑖
ሶ𝑋𝑡 = − 𝒜∗ 𝑟𝑡 𝑋𝑡 + 𝑋𝑡𝒜

∗ 𝑟𝑡

Theorem: If 𝐴𝑖 commute (𝐴𝑖𝐴𝑗 = 𝐴𝑗𝐴𝑖), then for any full rank ෨𝑋, if

𝑋𝑙𝑖𝑚𝑡 = lim
𝛼→0

𝑋∞(𝛼 ෨𝑋) is a global min with 𝒜 𝑋𝑙𝑖𝑚𝑖𝑡 = 𝑦 then:

𝑋𝑙𝑖𝑚𝑖𝑡 ∈ argmin
𝑋≽0

𝑋 ∗ 𝑠. 𝑡. 𝒜 𝑋 = 𝑦

• Independent of “steering” 𝑟𝑡—just need to stay on:

ℳ = 𝑋 = 𝑒𝒜
∗ 𝑠 𝑋0𝑒

𝒜∗ 𝑠 𝑠 ∈ ℝ𝑚

• E.g., can minimize other loss, use weights, or sample 𝐴𝑖

• But finite steps, as well as (infinitesimal) momentum, will fall off ℳ!

Corollary: Consider non-negative vector least square problem
min
𝑥∈ℝ+

𝑛
𝐴𝑥 − 𝑦 2

2

optimizing by gradient descent on 𝑢 ∈ ℝ𝑛 with 𝑥𝑖 = 𝑢𝑖
2.  If we start at 𝑢0 = 𝛼𝟏, as 

𝛼 → 0, grad flow converges to min ℓ1 norm solution: argmin
𝑥

𝑥 1 𝑠. 𝑡. 𝐴𝑥 = 𝑦



The Non-Commutative Case
ሶ𝑋𝑡 = − 𝒜∗ 𝑟𝑡 𝑋𝑡 + 𝑋𝑡𝒜

∗ 𝑟𝑡

• Solution given by “time ordered exponential”:

𝑋𝑡 = lim
𝜖→0

ෑ

𝜏= ൗ𝑡 𝜖

0

𝑒−𝜖𝒜
∗ 𝑟𝜏 𝑋0 lim

𝜖→0
ෑ

𝜏=0

ൗ𝑡 𝜖

𝑒−𝜖𝒜
∗ 𝑟𝜏

• With arbitrary (crazy) steering, can move in any direction and get to any 
psd matrix (even with 𝑚 = 2 random measurement matrices)

• Empirically, with residual steering, or other “smooth”, non-crazy steering, 
if we move far away form 𝑋0 ≈ 0, 𝑋𝑡 does satisfy the dual condition

• Possible approach: if steering is “non-crazy” (total variations converge as 
integral diverges), non-commutative terms are lower order and directions 
not spanned by leading eigenvectors of 𝒜∗ ∫ 𝑟𝑡𝑑𝑡 vanish.



Inductive Bias
(Geometry / Regularizer)

Optimization
Generalization

(Learning)


