The price of tuning Unique probes of tuned axions

Anson Hook Stanford

Tuning

- Usually Tuning is a bad thing
 - Naturalness has guided particle physics thinking for a very long time
- What if we're wrong?
 - Is this a bad thing?
- No!
- Interesting signatures can result from tuning

Axion solution

$$\mathcal{L} \supset \frac{g^2}{32\pi^2} (\theta - \frac{a}{f_a}) G_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{1}{2} \partial_{\mu} a \partial^{\mu} a$$

- One parameter solution (KSVZ axion)
- Also a dark matter candidate
- String theory motivation for not just one axion, but many many axions

Axion solution

$$\mathcal{L} \supset \frac{g^2}{32\pi^2} (\theta - \frac{a}{f_a}) G_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{1}{2} \partial_{\mu} a \partial^{\mu} a$$

Axion dynamically sets the neutron EDM to 0

$$V = -m_{\pi}^2 f_{\pi}^2 |\cos\left(\frac{a}{2f_a}\right)|$$

Axion parameter space

Instead of

$$V = -m_{\pi}^2 f_{\pi}^2 |\cos\left(\frac{a}{2f_a}\right)|$$

We have

$$V = -\epsilon m_{\pi}^2 f_{\pi}^2 |\cos\left(\frac{a}{2f_a}\right)|$$

Axion parameter space

Axion parameter space

Tuning

$$\mathcal{L} \supset y\phi\overline{\psi}\psi$$

 The biggest different between tuned particles and non-tuned particles is sensitivity to finite density corrections

$$m_{\phi} \sim y \Lambda$$

$$m_{\phi} \sim yT$$

 If tuned, thermal mass can be larger than bare mass

Neutron Stars are perfect places to study axions

- Neutron Stars are perfect places to study axions
- Large finite density objects
- How does the axion behave around and in large density objects?

- Neutron Stars are perfect places to study axions
- Large finite density objects
- How does the axion behave around and in large density objects?
- At high density, QCD deconfines so finite density makes the QCD contribution to the axion potential go away

Axion potential depends on quark condensate

$$m_u(\langle \overline{u}u\rangle_{n_N} - \langle \overline{u}u\rangle_0) = -m_u(\langle \frac{\partial H}{\partial m_u}\rangle_{n_N} - \langle \frac{\partial H}{\partial m_u}\rangle_0)$$

Axion potential depends on quark condensate

$$m_u(\langle \overline{u}u\rangle_{n_N} - \langle \overline{u}u\rangle_0) = -m_u(\langle \frac{\partial H}{\partial m_u}\rangle_{n_N} - \langle \frac{\partial H}{\partial m_u}\rangle_0)$$

$$H = E = m_n n_N$$

Axion potential depends on quark condensate

$$m_{u}(\langle \overline{u}u \rangle_{n_{N}} - \langle \overline{u}u \rangle_{0}) = -m_{u}(\langle \frac{\partial H}{\partial m_{u}} \rangle_{n_{N}} - \langle \frac{\partial H}{\partial m_{u}} \rangle_{0})$$
$$= -m_{u}\langle \frac{\partial E}{\partial m_{u}} \rangle = \sum_{N=n,p} n_{N} \sigma_{N}^{u}$$

$$H = E = m_n n_N \qquad \sigma_N^u \equiv m_u \frac{\partial m_N}{\partial m_u}$$

$$V = -m_{\pi}^2 f_{\pi}^2 (\epsilon - \frac{\sigma_N n_N}{m_{\pi}^2 f_{\pi}^2}) |\cos\left(\frac{a}{2f_a}\right)| + \mathcal{O}(\left(\frac{\sigma_N n_N}{m_{\pi}^2 f_{\pi}^2}\right)^2)$$

- If object is dense enough, sign of the potential flips when perturbation theory still valid!
 - Part of the reason why we needed a slightly tuned axion
- Neutron stars can source the axion!

When does this happen?

Energy!

Energy!

$$m_T = m_\pi f_\pi \frac{\sqrt{\frac{\sigma_N n_N}{m_\pi^2 f_\pi^2} - \epsilon}}{2f_a}$$

$$\Delta E \sim \text{Volume} \times \left(\frac{f_a^2}{r^2} - m_T^2 f_a^2\right) < 0$$

 Critical radius at which neutron stars start to source the axion

$$r_{
m crit} \gtrsim rac{1}{m_T}$$

$$r_{
m crit} \gtrsim rac{1}{m_T}$$

- Both neutron stars and nuclei are nuclear densities
- Only neutron stars large enough to source the axion
- Nuclei too small!
 - Fifth force constraints do not apply

 What happens when two objects that source the axion get close to each other? (Hint: the electron sources the electromagnetic field)

- What happens when two objects that source the axion get close to each other? (Hint: the electron sources the electromagnetic field)
- There is a force!
- The axion mediates a force between neutron stars!

$$a = q \frac{e^{-m_a r}}{4\pi r}$$

• Because the axion has a field value about π inside of the neutron star

$$q \sim 4\pi^2 f_a r_{NS}$$

 At long distances, easy to show that the force is a standard Yukawa force

$$V = -q_1 q_2 e^{-m_a D} / 4\pi D$$

$$V = -q_1 q_2 e^{-m_a D} / 4\pi D$$

Attractive or Repulsive interaction

$$V = -m_{\pi}^2 f_{\pi}^2 \left(\epsilon - \frac{\sigma_N n_N}{m_{\pi}^2 f_{\pi}^2}\right) \left|\cos\left(\frac{a}{2f_a}\right)\right| + \mathcal{O}\left(\left(\frac{\sigma_N n_N}{m_{\pi}^2 f_{\pi}^2}\right)^2\right)$$

 Due to symmetry, for every solution (charge) there is a negative solution

- Axion force is actually a boundary condition problem
 - In the limit where the tachyonic mass is infinite
- The axion is stuck to a particular value at the surface of the neutron star
- This is just like a conductor!
- The force between neutron stars can be calculated just like in E+M with a method of images

- Not a standard 1/r² force at short distances
- Attractive force weaker
- Repulsive force stronger

LIGO implications

- LIGO has seen merging neutron stars
- What sort of implications will this have for neutron stars inspirals?
 - Mergers will need numerical simulations
- New force
 - At r ~ 1/m, the new force kicks in and increases or decreases the frequency
- New radiation
 - When frequency ~ m, new scalar Larmor radiation

Inspiral

Inspiral can be calculated in a simple analytic way

Assume instantaneously circular orbit with time

dependent distance

Inspiral

 Power emitted comes from gravitational quadrople radiation and scalar dipole radiation

$$\frac{dE}{dt} = -\frac{32}{5}G\mu^2 D^4 \omega^6 - \frac{1}{4}\frac{\omega^4 p^2}{6\pi} (1 - \frac{m_a^2}{\omega^2})^{3/2} \Theta(\omega^2 - m_a^2)$$

$$p = q_1 r_1 - q_2 r_2$$

 Can calculate everything we want about the early inspiral phase from here

Inspiral - 80% gravity

Inspiral

- Two major effects
- Quality factor
 - Increases: Repulsive Interactions
 - Decreases: Attractive Interactions
- Amplitude
 - Decreases: Repulsive Interactions
 - Decreases: Attractive Interactions

$$h_{+}(t) = \frac{4G\mu\omega^{2}D^{2}}{r} \frac{1 + \cos\theta_{i}}{2} \cos 2\omega t, \qquad h_{\times}(t) = \frac{4G\mu\omega^{2}D^{2}}{r} \cos\theta_{i} \sin 2\omega t$$

$$Q \sim \frac{w^2}{\dot{w}}$$

$$h_{\times}(t) = \frac{4G\mu\omega^2 D^2}{r} \cos\theta_i \sin 2\omega t$$

Inspiral - Optimal Filter

Inspiral - Optimal Filter

Inspiral - 110% gravity

 As mentioned before objects can source the axion which leads to new constraints as theta angle is around π for these objects

Super Radiance spin downs highly spinning black holes

Theta on Earth measured to be very small

Be⁷-Li⁷ 862 keV neutrino line measured

m_p-m_n changed by 10 MeV

Hulse-Taylor and other binaries feel only GR at O(1)

If we understood white dwarf/ neutron star nuclear emission lines at theta = π

Very dependent on equation of state and masses but in principle can exclude

Conclusion

- Tuning is not always bad
- Tuned axions can
 - Mediate forces stronger than gravity between neutron stars while evading 5th force experiments
 - Attractive or repulsive of force
 - Distance scale of force is naturally 10-100 km
 - Not necessarily a 1/r² force

Conclusion

- To Do: Numerical Simulations!
 - To see that force is not 1/r², neutron stars need to be very close
 - Interactions between neutron stars will change boundary condition
 - To see effect on late inspiral/merger
 - Effect of equation of state
 - What happens for a non tuned axion

• ...