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Tuning

• Usually Tuning is a bad thing 
• Naturalness has guided particle physics thinking for a 

very long time 

• What if we’re wrong? 
• Is this a bad thing? 

• No! 

• Interesting signatures can result from 
tuning



Axion solution

• One parameter solution (KSVZ axion) 

• Also a dark matter candidate 

• String theory motivation for not just one axion, 
but many many axions
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Axion solution

Axion dynamically sets 
the neutron EDM to 0
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Axion parameter space

• Instead of 

• We have
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Axion parameter space
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• The biggest different between tuned 
particles and non-tuned particles is 
sensitivity to finite density corrections

Tuning

L � y�  

m� ⇠ y⇤ m� ⇠ yT

• If tuned, thermal mass can be larger than 
bare mass



• Neutron Stars are perfect places to study 
axions

Neutron Stars + axions



• Large finite density objects 

• How does the axion behave around and in 
large density objects?

Neutron Stars + axions

• Neutron Stars are perfect places to study 
axions



• Large finite density objects 

• How does the axion behave around and in 
large density objects?

Neutron Stars + axions

• At high density, QCD deconfines so finite 
density makes the QCD contribution to  
the axion potential go away

• Neutron Stars are perfect places to study 
axions



• Axion potential depends on quark condensate

Neutron Stars + axions

mu(huuinN � huui0) = �mu(h
@H

@mu
inN � h @H

@mu
i0)



• Axion potential depends on quark condensate

Neutron Stars + axions

mu(huuinN � huui0) = �mu(h
@H

@mu
inN � h @H

@mu
i0)

H = E = mnnN



• Axion potential depends on quark condensate

Neutron Stars + axions
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Neutron Stars + axions

• If object is dense enough, sign of the potential flips 
when perturbation theory still valid! 

• Part of the reason why we needed a slightly tuned axion 

• Neutron stars can source the axion!
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Other contributions to the axion potential can be simply added to obtain the total axion
potential.

In this paper, we will consider a type of axion with a mass that is smaller than expected
from Eq. 1.3, which the CASPER experiment [7] is searching for and which is discussed in
Ref. [8]. Thus we are considering QCD axions whose potential is
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These axions are lighter than expected by a factor of
p
✏ and necessarily have f
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Surprisingly, these types of QCD axions can mediate large forces between neutron stars
that are not excluded by current fifth force measurements. Not only that, but the more
weakly coupled the axion is, the stronger the force becomes! As an illustration, consider a
non-relativistic gas of neutrons and protons. The finite density corrections to Eq. 1.4 are
reviewed in App. A. The finite density potential for the axion is

V = �m2
⇡

f2
⇡

(✏� �
N

n
N

m2
⇡

f2
⇡

)| cos
✓

a

2f
a

◆
|+O(

✓
�
N

n
N

m2
⇡

f2
⇡

◆2

), �
N

⌘
X

q=u,d

m
q

@m
N

@m
q

(1.5)

where n
N

is the number density of nucleons and in this equation and for the rest of the
paper we make the simplifying approximation m

u

⇡ m
d

. In vacuum, the axion has a positive
mass and is stabilized at the origin. The situation is very different at finite densities where
the coefficient of the cosine can switch signs and instead the axion is stabilized around
a/f

a

= ⇡. Because ✏ . 1, the axion potential can change sign while perturbation theory
is still valid. There is no need to appeal to deconfinement or any other non-perturbative
phenomenon that may occur at high densities. In practice, the neutron star is dense enough
that perturbation theory may break down. Since � ⇠ 60 MeV [], if one takes a solar mass
neutron star with a radius of 10 km, then the expansion parameter is 0.4, beyond the regime
where perturbation theory performs well.

The change in sign of the axion potential at high densities allows the axion to be sourced
by objects with near nuclear densities. There are two objects with such densities in the
universe: neutron stars and nuclei. An energetics argument shows why neutron stars can
source axions while nuclei do not. To see if the a = 0 solution is unstable to perturbations,
we can simply compare the gradient energy required to move the axion away from zero
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Neutron Stars as axion 
sources

• When does this happen?

r
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Neutron Stars as axion 
sources

• Energy!

r
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Neutron Stars as axion 
sources

• Energy!

r

a

Gain in potential 
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axion is sourced if the neutron star is larger than

rcrit &
1

m
T

, m
T

= m
⇡

f
⇡

q
�NnN
m

2
⇡f

2
⇡
� ✏

2f
a

, (1.6)

where m
T

is the tachyonic mass of the axion inside the neutron star or nuclei. Due to
supernova bounds, we are required to have rcrit & 10

�8 km = 10

10 fm. Thus nuclei are too
small to source the axion, while neutron stars can do so with ease. This allows one to avoid
fifth force experiments as they are all experiments performed using objects which cannot
source the axion.

The more weakly coupled the axion is (the larger f
a

), the more it is displaced in field
space. The greater the displacement, the larger energies such as gradient energy are. Thus
we are surprised to find that the more weakly coupled the axion, the stronger the force it
mediates! Conversely, using Eq. 1.6 we see that the more weakly coupled the axion, the
larger the object needs to be to source the axion. In Sec. 2, we will show that under certain
assumptions, analytic expressions for the force can be derived. The force is a standard
1/r2 Yukawa force with an effective charge of f

a

rNS where rNS is the radius of the neutron
star. It also shows that the axionic force between neutron stars can be either attractive or
repulsive.

There is an interesting numerical coincidence when considering axionic forces. In order
for the force to be observable, we will be considering axionic forces comparable to gravity.
This means that f

a

& M
p

. Amusingly, for this value of the mass, we find that 1/m
a

⇠ 10

km/
p
✏. Thus the force is naturally already of order 10 km or longer. The less tuned the

axion mass, the closer the inverse of the mass is to being around 10 km. This coincidence is
also a double-edged sword as the requirement that neutron stars be larger than the critical
radius implies that the axion force also cannot be much stronger than gravity, as 10 km is
already the size of the neutron star.

Having a new force between neutrons stars is exciting because LIGO has the potential
to detect neutron star mergers and can probe new forces between neutron stars. The fact
that the new force has an associated length scale means that at distances ⇠ 1/m

a

, both
the frequency of orbit and the frequency of the emitted gravity waves will change. When
the frequency of rotation becomes larger than m

a

, then scalar Larmor radiation can occur
and the rate of change of the frequency of the gravity waves will change. The most drastic
effect occurs when the axionic force is stronger than gravity and is repulsive. In this case,
the neutron stars do not merge and instead come to rest at a fixed distance apart from each
other.

The behavior of the axions discussed in this paper is very similar to the case of spon-
taneous scalarization [10]. In brief, spontaneous scalarization is a similar effect that occurs
with a dilaton-like scalar. Due to the coupling of the dilaton squared to Tµ

µ

, if the dilaton
has been tuned to be light, then finite density effects can push the dilaton away from the
origin resulting in a force between neutron stars. The salient differences between the dilaton

– 3 –



Neutron Stars as axion 
sources
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Neutron Stars as axion 
sources
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• Both neutron stars and nuclei are nuclear densities 

• Only neutron stars large enough to source the axion 

• Nuclei too small! 
• Fifth force constraints do not apply



Neutron Stars as axion 
sources
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Figure 1. Value of ✓ = a/fa at the center of the neutron star as a function of r0NS. The four
curves correspond to m2

a/m
2
T = 0.1 (black), 0.01 (blue), 0.001 (purple) and 0 (brown) from right to

left. An initial profile was assumed and then time evolved with friction towards the stable solution.
The resulting data points were fitted to a smooth curve. There is clearly a phase transition where
only at a particular radius does the neutron star start to source the axion.

in figure 1, a phase transition around r0NS ⇠ 1 occurs rather robustly and is only mildly
sensitive to the value of m2

a

/m2
T

. Small values of r0NS do not source the axion while large
values do. The profile shown in figure 1 is insensitive to the axion profile assumed as the
initial condition of time evolution.

Outside the neutron star, the axion potential is roughly V ⇡ m2
a

a2/2. In this limit, one
can see that the only solution for the fall off of the axion field is a = qeffe�mar/r. The axion
falls off like any other massive Yukawa interaction with an effective coupling qeff ⇠ 4⇡f

a

rNS.
Thus one can view a neutron star as a boundary condition where the vacuum expectation
value (vev) of the axion is set to be ⇠ f

a

.
There are several cases where explicit analytic expressions for the forces between neu-

tron stars can be calculated. The simplest example of such an effect is in the limit where
1/m

a

� D � rNS � 1/m
T

, where D is the distance between the neutron stars. The axion
mass can be neglected and the neutron stars can be treated as point-like axion source. In
this limit, the axion field sourced by a pair of neutron stars is

a =

q1
4⇡|r � r1| +

q2
4⇡|r � r2| , (2.2)

where the two neutron stars have effective charges q1,2 ⇠ 4⇡f
a

rNS, positions r1,2 and we
have imposed that the axion field falls off to zero at infinity. The potential energy between
the two neutron stars is therefore the potential of two point charges with equivalent charge
q1 and q2

V = � q1q2
4⇡D

, (2.3)

where D = |r1 � r2|. Thus an inverse-square-law force pulls the two neutron stars closer
(farther) in the case where q1q2 > 0 (q1q2 < 0). This result is not surprising as in this limit,
the neutron stars behave like standard point sources.
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Neutron Stars as axion 
sources
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the neutron stars behave like standard point sources.
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r0 = rmT

Asymptote at 𝜋 as expected
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• What happens when two objects that source the 
axion get close to each other? (Hint : the electron 
sources the electromagnetic field )



Axionic Force

• What happens when two objects that source the 
axion get close to each other? (Hint : the electron 
sources the electromagnetic field )

• There is a force! 

• The axion mediates a force between neutron stars!



Axionic Force

a = q
e�mar

4⇡r

q ⇠ 4⇡2farNS

• Because the axion has a field value about 𝜋 inside of 
the neutron star

• At long distances, easy to show that the force is a 
standard Yukawa force

The force between neutron stars can be attractive or repulsive. To see this, note
that for every solution ✓1(r), there is a second solution ✓2(r) = �✓1(r) that also satisfies
equations 2.1. At long distances, this means that q1 = �q2, resulting in a repulsive force.

The result can be easily extended to the case where D & 1/m
a

� rNS � 1/m
T

. In
this limit, the axion potential outside a neutron star will be approximated as V

a

⇡ m2
a

a2/2,
which makes the axion field exponentially small at distances D > 1/m

a

. The potential
energy between two neutron stars becomes V = �q1q2e�maD/4⇡D, the standard Yukawa
potential.

The strength of the force between two neutron stars due to axion compared to newto-
nian gravity is therefore, neglecting the exponential factor,

Faxion

FN
⇡ (qrNSfa)2

4⇡GM2
NS

=

1

2

✓
qf

a

4⇡Mpl

◆2✓ rNS

GMNS

◆2

, (2.4)

where Mpl is the reduced Planck scale. The asympotic value of q/4⇡ ⇠ ⇡ can be found
numerically assuming that the neutron star is much larger than the size of the tachyonic
mass. This suggests that, for an ordinary neutron star equation of state, f

a

⇡ Mpl/10

would lead to an axion force as strong as gravity, as shown in figure 2. Long range forces
between neutron stars can be probed by measurement of neutron star-pulsar and double
pulsar binaries. Forces comparable to or stronger than gravity with range as long as roughly
a light second are excluded by existing measurement of the Hulse-Taylor binary [27] and
PSR J0737-3039 [28] (see, for example, [29] for a detailed review). Forces with strength
as small as 10

�6 that of gravity can be probed with current and future measurement of
these binary systems, potentially closing the gap between the solar constraint and existing
binary system measurement at low masses (see figure 6). Determining the exact constraint
one might get from measurement of these binary systems depends on neutron star equation
of states, and requires dedicated analysis of the orbital evolution, which we leave to future
analysis.

The generalization to the case where 1/m
a

� D & rNS � 1/m
T

is less obvious. In this
case, the force between two neutron stars is analogous to a calculation of the force between
conductors in classical electromagnetism, where image charges are introduced to maintain
a spherical equal-potential surface. The method of image charges can also be used to find
the potential energy of the system as a function of the distance d between the two neutron
stars. When the axion field value in the two neutron stars is the same, as the neutron stars
get closer, the image charge required to maintain a constant potential ✓ on the surface of a
neutron star becomes more negative, and the energy of the system decreases. In this case,
the force between the neutron stars mediated by the axion is attractive. On the other hand,
if the axion field values inside the two neutron stars are different, the force between the
neutron stars is repulsive. The exact distance dependence of the force is shown in figure 3.
The repulsive force becomes stronger at shorter distances compared to the force between
point objects, while the attractive force becomes weaker.

In a neutron star merger event where the force mediated by the axion is weaker than
gravity, the additional axion force shows up as an anomalous weakening of the attraction
between neutron stars as they approach each other throughout the inspiral phase. The effect
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get closer, the image charge required to maintain a constant potential ✓ on the surface of a
neutron star becomes more negative, and the energy of the system decreases. In this case,
the force between the neutron stars mediated by the axion is attractive. On the other hand,
if the axion field values inside the two neutron stars are different, the force between the
neutron stars is repulsive. The exact distance dependence of the force is shown in figure 3.
The repulsive force becomes stronger at shorter distances compared to the force between
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where g
s

is the strong coupling constant, Gµ⌫ is the gluon field strength and ˜Gµ⌫

=

1
2✏

µ⌫⇢�G
⇢�

. The above coupling dynamically sets the neutron eDM to zero. At low en-
ergies, the axion obtains a potential from the coupling to gluons

V = �m2
⇡

f2
⇡

s

1� 4m
u

m
d

(m
u

+m
d

)

2
sin

2

✓
a

2f
a

◆
. (1.3)

Other contributions to the axion potential can be simply added to obtain the total axion
potential.

In this paper, we will consider a type of axion with a mass that is smaller than expected
from Eq. 1.3, which the CASPER experiment [7] is searching for and which is discussed in
Ref. [8]. Thus we are considering QCD axions whose potential is

V = �m2
⇡

f2
⇡

✏

s

1� 4m
u

m
d

(m
u

+m
d

)

2
sin

2

✓
a

2f
a

◆
. (1.4)

These axions are lighter than expected by a factor of
p
✏ and necessarily have f

a

& 4⇥ 10

8

GeV [9] due to supernova cooling arguments. This translates to a mass m
a

. p
✏ 16 meV

or 1/m
a

& 10

�8 km/
p
✏.

Surprisingly, these types of QCD axions can mediate large forces between neutron stars
that are not excluded by current fifth force measurements. Not only that, but the more
weakly coupled the axion is, the stronger the force becomes! As an illustration, consider a
non-relativistic gas of neutrons and protons. The finite density corrections to Eq. 1.4 are
reviewed in App. A. The finite density potential for the axion is

V = �m2
⇡

f2
⇡

(✏� �
N

n
N

m2
⇡

f2
⇡

)| cos
✓

a

2f
a

◆
|+O(

✓
�
N

n
N

m2
⇡

f2
⇡

◆2

), �
N

⌘
X

q=u,d

m
q

@m
N

@m
q

(1.5)

where n
N

is the number density of nucleons and in this equation and for the rest of the
paper we make the simplifying approximation m

u

⇡ m
d

. In vacuum, the axion has a positive
mass and is stabilized at the origin. The situation is very different at finite densities where
the coefficient of the cosine can switch signs and instead the axion is stabilized around
a/f

a

= ⇡. Because ✏ . 1, the axion potential can change sign while perturbation theory
is still valid. There is no need to appeal to deconfinement or any other non-perturbative
phenomenon that may occur at high densities. In practice, the neutron star is dense enough
that perturbation theory may break down. Since � ⇠ 60 MeV [], if one takes a solar mass
neutron star with a radius of 10 km, then the expansion parameter is 0.4, beyond the regime
where perturbation theory performs well.

The change in sign of the axion potential at high densities allows the axion to be sourced
by objects with near nuclear densities. There are two objects with such densities in the
universe: neutron stars and nuclei. An energetics argument shows why neutron stars can
source axions while nuclei do not. To see if the a = 0 solution is unstable to perturbations,
we can simply compare the gradient energy required to move the axion away from zero
(f2

a

/r2) with the gain in potential energy m2
⇡

f2
⇡

(✏� �NnN
m

2
⇡f

2
⇡
). Only when the gain in potential
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• Due to symmetry, for every solution (charge) there is 
a negative solution
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Figure 2. The strength of the axion force between two neutron stars compared to the gravitational
attraction as a function of the axion decay constant fa with a vanishing axion mass. The blue
shaded region are regions of parameter space that are allowed after taking into account constraints
on the neutron star equation of state. The upper and lower blue solid lines come from the maximal
and minimal allowed neutron star radius-mass-ratio, respectively. The red dashed line marks the
maximal fa above which the neutron star is not dense enough for our effect to take place.

Figure 3. (Left Figure) The force (arbitrary units) between the two neutron stars as a function
of the distance between them. The blue solid curve shows the attractive force between two neutron
stars with the same axion field value inside them (✓0(r) = ✓(r)) while the red solid curve shows the
repulsive force between two neutron stars with opposite axion field values (✓0(r) = �✓(r)). The
dashed lines show the same force but with neutron stars treated as point sources. (Right Figure)
The ratios between the attractive (blue curve) and repulsive (red curve) forces mediated by the
axion to the corresponding forces between point sources. At short distances, the attractive force is
weaker than the forces between point sources while the repulsive force is stronger than the forces
between point sources.

of the axion force slowly turns on as the neutron stars inspiral, contrary to the deviations
from post-Newtonian results due to distortion of the neutron stars studied in [30], which
will dominate when the neutron stars are less than ⇠ 40 km apart (see [31] for a detailed
review). The most general case where 1/m

D

⇠ D & rNS & 1/m
T

cannot be treated
analytically and will be examined in future work.
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Axion force 
as strong as 
gravity!

Neutron star too 
small to source axion



Axionic Force

• Axion force is actually a boundary condition problem 
• In the limit where the tachyonic mass is infinite 

• The axion is stuck to a particular value at the surface 
of the neutron star 

• This is just like a conductor! 

• The force between neutron stars can be calculated 
just like in E+M with a method of images



Axionic Force

Figure 2. The strength of the axion force between two neutron stars compared to the gravitational
attraction as a function of the axion decay constant fa with a vanishing axion mass. The blue
shaded region are regions of parameter space that are allowed after taking into account constraints
on the neutron star equation of state. The upper and lower blue solid lines come from the maximal
and minimal allowed neutron star radius-mass-ratio, respectively. The red dashed line marks the
maximal fa above which the neutron star is not dense enough for our effect to take place.
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Figure 3. (Left Figure) The force (arbitrary units) between the two neutron stars as a function
of the distance between them. The blue solid curve shows the attractive force between two neutron
stars with the same axion field value inside them (✓0(r) = ✓(r)) while the red solid curve shows the
repulsive force between two neutron stars with opposite axion field values (✓0(r) = �✓(r)). The
dashed lines show the same force but with neutron stars treated as point sources. (Right Figure)
The ratios between the attractive (blue curve) and repulsive (red curve) forces mediated by the
axion to the corresponding forces between point sources. At short distances, the attractive force is
weaker than the forces between point sources while the repulsive force is stronger than the forces
between point sources.

of the axion force slowly turns on as the neutron stars inspiral, contrary to the deviations
from post-Newtonian results due to distortion of the neutron stars studied in [30], which
will dominate when the neutron stars are less than ⇠ 40 km apart (see [31] for a detailed
review). The most general case where 1/m

D

⇠ D & rNS & 1/m
T

cannot be treated
analytically and will be examined in future work.
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• Not a standard 1/r2 force at short distances 

• Attractive force weaker 

• Repulsive force stronger

Attractive Force

Repulsive Force

1/r2

Conductor



LIGO implications

• LIGO has seen merging neutron stars 

• What sort of implications will this have for neutron 
stars inspirals? 

• Mergers will need numerical simulations 

• New force 
• At r ~ 1/m, the new force kicks in and increases or decreases the frequency 

• New radiation 
• When frequency ~ m, new scalar Larmor radiation



Inspiral

• Inspiral can be calculated in a simple analytic way 

• Assume instantaneously circular orbit with time 
dependent distance

r1

r2



Inspiral

• Power emitted comes from gravitational quadrople 
radiation and scalar dipole radiation

3 Observational consequences for Advanced LIGO

The axion force between neutron stars discussed in the previous sections can be tested at
Advanced LIGO. In this section we calculate how the signal-to-noise ratio (SNR) of neutron
star inspirals depend on the existence of a new force, assuming that precise waveforms of
the gravitational wave emission with the axion force will become available. Numerical work
will be important in determining the details, but the qualitative effects can be seen using
simple analytic expressions.

Before we get into detailed calculation of several specific examples, let us first summa-
rize the main changes to the neutron star inspiral that leads to changes to the waveform.
The additional attractive or repulsive force mediated by the axion, as well as the radiation
of axions, will change the rotational frequency of an inspiral as well as how the rotational
frequency changes with time. These changes will lead to changes to the amplitude of the
gravitational wave as well as the quality factor of the gravitational wave. Additional scalar
Larmor radiation increases the change in frequency and thus decreases the quality factor,
making the signal less visible. The additional force affects both the amplitude and quality
factor, and therefore, depending on the strength, range and sign of the force, the final effect
might be rather different. In the following, we will use a few special cases to explain how
the SNR depends on the strength and range of the force for both attractive and repulsive
forces

We can estimate the rough behavior of inspiral phase of the neutron stars by using
Newtonian mechanics with gravitational quadropole radiation and scalar Larmor radiation
(See appendix B for a derivation of scalar Larmor radiation), as well as radiation reaction.
We take the inspiral to proceed as circular motion with radiation resulting in a time-
dependent radius. In particular, we solve the system of equations

dE

dt
= �32

5

Gµ2D4!6 � 1

4

!4p2

6⇡
(1� m2

a

!2
)

3/2
⇥(!2 �m2

a

)

dV

dD
= µD!2, (3.1)

with

V = �GM1M2

D
� q1q2e�maD

4⇡D

E =

1

2

µD2!2
+ V, (3.2)

where µ =

M1M2
M1+M2

is the reduced mass, and p = q1r1 � q2r2 is the equivalent of a dipole
moment. The orbital frequency ! and inter neutron star distance D are both time dependent
functions. Note that in this calculation, we are using the Yukawa approximation for the
force. This assumption is valid as most of the statistical significance of the inspiral is
obtained when rNS/D . 0.1.

From this Newtonian approximation, we can derive the form of the gravitational waves
seen by Advanced LIGO. Ignoring red-shift factors, the gravitational waves have the form

h+(t) =
4Gµ!2D2

r

1 + cos ✓
i

2

cos 2!t, h⇥(t) =
4Gµ!2D2

r
cos ✓

i

sin 2!t, (3.3)
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• Can calculate everything we want about the early 
inspiral phase from here
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Inspiral

• Two major effects 

• Quality factor 
• Increases : Repulsive Interactions 

• Decreases : Attractive Interactions 

• Amplitude 
• Decreases : Repulsive Interactions 

• Decreases : Attractive Interactions

3 Observational consequences for Advanced LIGO

The axion force between neutron stars discussed in the previous sections can be tested at
Advanced LIGO. In this section we calculate how the signal-to-noise ratio (SNR) of neutron
star inspirals depend on the existence of a new force, assuming that precise waveforms of
the gravitational wave emission with the axion force will become available. Numerical work
will be important in determining the details, but the qualitative effects can be seen using
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functions. Note that in this calculation, we are using the Yukawa approximation for the
force. This assumption is valid as most of the statistical significance of the inspiral is
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Inspiral - Optimal Filter
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Figure 4. (Left Figure) The dependence of the total SNR on the charge q with a massless axion.
The charge of the neutron stars is assumed to be the same while the masses are assumed to be 1
and 1.1 solar masses. The different masses are chosen to ensure that the scalar dipole moment does
not vanish. The blue dotted curve is a new attractive force while the red dashed curve is a new
repulsive force. We see that repulsive interactions make the neutron stars harder to detect while
attractive interactions make them easier to detect. (Right Figure) The dependence of the total
SNR on mass of the axion. As before, we choose a 1 and 1.1 solar mass black hole with charges
±1 so that the asymptotic result when ma ! 0 matches the figure on the left. As the range of the
force approaches to the 100 km scale, the attractive (repulsive) interaction goes from being more
(less) visible than normal neutron stars to being less (more) visible.

where ✓
i

is the inclination of the system relative to the observer (for simplicity we will set
it to 0 for the rest of the paper) and r is the distance to the source. The Fourier transform
of the gravitational wave can be calculated using the stationary phase approximation and
is

|˜h2(f)| = |˜h2+(f)|+ |˜h2⇥(f)| =
4⇡G2µ2r4!4

D2!̇
|
!=⇡f

. (3.4)

The frequency of the gravitational wave is related to the frequency of orbit by w = ⇡f , as
expected from quadropole radiation.

Assuming an optimal filter, the total SNR can be calculated to be

SNR2
= 4

Z 1

0
df

|˜h2(f)|
S
n

(f)
, (3.5)

where S
n

(f) is the one-sided power spectral density. When estimating the SNR, we use the
projected sensitivity of Advanced LIGO [32]. In our calculations, we only use the inspiral
phase of the neutron star merger as the merger itself requires careful numerical simulation.

What is of interest is whether the new axion force makes the merger of neutron stars
more or less visible. Figure 4 shows the total SNR as a function of the effective charge q

and axion mass and compares it to the total SNR of the same neutron stars with no charge.

Two competing effects lead to the structure seen in figure 4. At a fixed frequency, the
SNR of the gravitational wave is proportional to the radius to the fourth and inversely
proportional to !̇. If a new attractive (repulsive) force is present, then the radius increases
(decreases). This increase (decrease) in the amplitude of the gravitational waves can be
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Figure 4. (Left Figure) The dependence of the total SNR on the charge q with a massless axion.
The charge of the neutron stars is assumed to be the same while the masses are assumed to be 1
and 1.1 solar masses. The different masses are chosen to ensure that the scalar dipole moment does
not vanish. The blue dotted curve is a new attractive force while the red dashed curve is a new
repulsive force. We see that repulsive interactions make the neutron stars harder to detect while
attractive interactions make them easier to detect. (Right Figure) The dependence of the total
SNR on mass of the axion. As before, we choose a 1 and 1.1 solar mass black hole with charges
±1 so that the asymptotic result when ma ! 0 matches the figure on the left. As the range of the
force approaches to the 100 km scale, the attractive (repulsive) interaction goes from being more
(less) visible than normal neutron stars to being less (more) visible.

where ✓
i

is the inclination of the system relative to the observer (for simplicity we will set
it to 0 for the rest of the paper) and r is the distance to the source. The Fourier transform
of the gravitational wave can be calculated using the stationary phase approximation and
is

|˜h2(f)| = |˜h2+(f)|+ |˜h2⇥(f)| =
4⇡G2µ2r4!4

D2!̇
|
!=⇡f

. (3.4)

The frequency of the gravitational wave is related to the frequency of orbit by w = ⇡f , as
expected from quadropole radiation.

Assuming an optimal filter, the total SNR can be calculated to be

SNR2
= 4

Z 1

0
df

|˜h2(f)|
S
n

(f)
, (3.5)

where S
n

(f) is the one-sided power spectral density. When estimating the SNR, we use the
projected sensitivity of Advanced LIGO [32]. In our calculations, we only use the inspiral
phase of the neutron star merger as the merger itself requires careful numerical simulation.

What is of interest is whether the new axion force makes the merger of neutron stars
more or less visible. Figure 4 shows the total SNR as a function of the effective charge q

and axion mass and compares it to the total SNR of the same neutron stars with no charge.

Two competing effects lead to the structure seen in figure 4. At a fixed frequency, the
SNR of the gravitational wave is proportional to the radius to the fourth and inversely
proportional to !̇. If a new attractive (repulsive) force is present, then the radius increases
(decreases). This increase (decrease) in the amplitude of the gravitational waves can be

– 9 –

Attractive

Repulsive

Inspiral - Optimal Filter



Inspiral - 110% gravity

0 1000 2000 3000 4000 5000 6000

50
100

500
1000

5000
104

time (s)

ω
(H
z)

Figure 5. Angular frequency as a function of time for a pair of inspiraling neutron stars where the
axion force is stronger than gravity and repulsive. The black curve shows the result for uncharged
neutron stars while red shows the result for neutron stars with a charge. The frequency increases
until the radius of the orbit is r ⇠ 1/ma, where the repulsive force turns on and the frequency
starts to decrease.

4 Constraints from other measurements

Just as the axion can be sourced by neutron stars, it can also be sourced by other compact
stellar objects such as the earth, the sun, red giants and white dwarfs. Due to the much
smaller density of these objects compared to the neutron star, the axion potential needs
to be proportionally more tuned. However, since we have a good understanding of the
composition and spectroscopy of these objects, we can put constraints on a wide range of
allowed axion parameter spaces.

Similar to the neutron star case, when the axion is light, the large densities inside a
stellar object can also change the sign of the axion potential and source an axion field with
✓ ⇠ ⇡ inside the stellar object and a profile

✓(r > rS) ⇠ ⇡rS
r

exp[�m
a

r] (4.1)

outside, where rS is the radius. This relation holds as long as the density and radius of the
stellar object obeys

⇢S & m2
a

f2
a

, and 1/r
S

. p
⇢S/fa. (4.2)

The physical properties of nuclear matter will change dramatically in a medium with
a large ✓-angle. An O(1) ✓-angle will lead to changes to the masses of the pions, the
mass difference between the proton and the neutron, as well as the mass spectrum of
stable nuclei. A simple rule of thumb is that if ✓ = ⇡ then one can simply treat the
up quark mass as negative so that the pion mass decreases and the proton neutron mass
difference increases (see e.g. [37] for details). These changes can be observed by current and
future measurements of stellar objects with various densities and sizes. The constraints are
summarized in figure 6 and discussed below.

4.1 Direct observable consequences

If the axion is sourced on earth or by a nearby stellar object, then direct observables on
earth can be used to exclude it. QCD theta angle that is not extremely close to 0 or ±⇡ is
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Constraints

• As mentioned before objects can source the axion 
which leads to new constraints as theta angle is 
around 𝜋 for these objects
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Conclusion

• Tuning is not always bad 

• Tuned axions can  
• Mediate forces stronger than gravity between neutron 

stars while evading 5th force experiments 

• Attractive or repulsive of force 

• Distance scale of force is naturally 10-100 km 

• Not necessarily a 1/r2 force



Conclusion

• To Do : Numerical Simulations! 
• To see that force is not 1/r2, neutron stars need to be 

very close 

• Interactions between neutron stars will change 
boundary condition 

• To see effect on late inspiral/merger 

• Effect of equation of state 

• What happens for a non tuned axion 

• …


