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Direct Detection vs. Dark Matter

•  XENON, 1512.07501
•  LZ, 1509.02910

•  SuperCDMS, 1610.00006 
•  DAMIC, Privitera, LDMA2017
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Assumptions for WIMP-like relics

DM stabilized by Z2 symmetry

µ = 0 by 2-to-2 annihilations

TSM ⇠ TD

No entropy dump

(excludes: semi-annihilations)

(excludes: asymmetric DM, SIMP, ELDER,…)

(exclides: freeze-in, cannibal,…)

1)

2)

3)

4)
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i) Resonant enhancement
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ii) Forbidden channels

D’Agnolo, Ruderman 1505.07107

Boltzmann suppression in the thermal average allows DM to have O(1) couplings but 
exponentially lighter that the weak scale.
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The exchange reaction keeps the chemical potential of the two species equal, 
and fast reactions that deplete psi will deplete chi.
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What if exchange reactions decouple earlier than 
annihilations?
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Coscattering Signals
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FIG. 4. The left side shows how the di↵erent phases of freezeout depend on (m�, �). Below the dotted blue line, in the
coscattering region, elastic scattering, ��! ��, decouples before the coscattering diagram, and thermal e↵ects are important.
The right side summarizes the phenomenology of the model for a mediator � coupling to electrons. Supernova cooling constrains
both the direct production of � and that of dark matter n

1

, while we find that n

2

⇡  is always trapped inside the star. The
other constraints are described in the main body of the text. The reach of PIXIE corresponds to µ < 2.8 ⇥ 10�8 and
y < 2.4⇥ 10�9 [63, 64]. The reach including the expected impact of foregrounds, µ < 9.4⇥ 10�8 [65], is shown with a dotted
line. The remaining model parameters are set to |y| = 1, |�| = 10�4

, arg y = �i⇡/

p
2, arg � = 1/2, and m�/m� = 0.9. On

both sides, � is fixed at each point to reproduce the observed relic density.

this expression by assuming real �m and y and taking
the limit � ⌧ � ⌧ 1.

Fig. 2 shows the � energy density as a function of x.
We see that Eq. 23 underestimates the � abundance com-
pared to the solution of Eq. 11. For the parameter choice
displayed in Fig. 2, chemical freeze-out of the coscatter-
ing process occurs at x ⇡ 20, while elastic scattering,
��! ��, freezes out earlier, x ⇡ 10.

Fig. 3 shows how the relic density, ⌦
�

, depends on
r ⌘ m

�

/m
�

and � ⌘ (m
 

� m
�

)/m
�

. The relic den-
sity is exponentially sensitive to these quantities (Eq. 6).
For the chosen parameters, the departure from kinetic
equilibrium is always relevant. The right of Fig. 3 shows
that thermal corrections from Eq. 11 are enhanced as the
splitting � increases.

It is clear from the previous discussion and Fig. 3 that
coscattering and coannihilations are closely related [46].
By varying parameters, any model with coannihilations
also realizes coscattering. The left of Fig. 4 is the phase
diagram, which shows the transition from the coscatter-
ing to the coannihilation phase as � and m

�

are var-
ied. Coscattering occurs in the region with small mixing,
� ⌧ 1, and heavy �, m

�

⇠ m
 

. This is because the ratio
between the coscattering and   ! �� rates scales as
⇠ �2neq

�

/neq

 

⇠ �2e(m �m�)/T .
For completeness, the left of Fig. 4 also shows the

WIMP phase, where the relic density is set by the freeze-
out of ��! ��. It is divided into the conventional case,
m
�

> m
�

, and the forbidden regime [5, 11], m
�

< m
�

.
Phenomenology: So far, we have implicitly assumed
that � is part of the thermal bath and can decay to other
species. The simplest possibility is that � couples to SM

particles, leading to experimental signals. In the follow-
ing, we assume that � couples to electrons,

L � �y
�e

� ēe + h.c. (9)

For large enough coupling, y
�e

& 10�10, the dark sector
is in kinetic equilibrium with the SM, implying that the
DM temperature tracks the photon temperature. When
the coupling becomes too large, y

�e

& 10�3, dark matter
scattering o↵ electrons, �e± !  e±, keeps � and  in
equilibrium, bringing the model back into the coannihi-
lation phase. Coscattering is therefore realized for a wide
range of couplings: y

�e

⇠ 10�(3�10).
The various phenomenological constraints are summa-

rized on the right side of Fig. 4. The scalar mediator is
constrained by direct production in beam dump experi-
ments [47–50], BaBar [51], and supernovae [52–57]. Since
� couples to electrons but not neutrinos, it modifies their
relative temperatures after the weak interactions decou-
ple, changing the e↵ective number of neutrinos, N

e↵

[58].
We show the current constraints from Planck [30] and the
projected reach of CMB Stage-4 experiments [59].
To conclude this section we discuss a characteristic

signal of coscattering. In the coscattering regime, the
leading decay of  is three-body,  ! �e+e�, and  is
typically long lived,
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(10)
These decays can inject energy into CMB photons after
the decoupling of double Compton scattering, modify-
ing the blackbody spectrum by producing µ or y dis-
tortions [60, 61]. Current constraints from FIRAS [62]

A simple model
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Coscattering Signals
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The parameter space of thermal DM is vast and the 
question about the existence of a DD target has a 

model dependent answer.

Identified a new generic mechanism for thermal DM, 
coscattering.

A lot is left to explore regarding the possible  
phenomenology of coscattering.

Conclusions


