



## The Proton Radius Puzzle

Gil Paz

Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA

# Introduction: The proton radius puzzle

### Form Factors

• Matrix element of EM current between nucleon states give rise to two form factors  $(q = p_f - p_i)$ 

$$\langle N(p_f)|\sum_{q} e_q \,\bar{q}\gamma^{\mu}q|N(p_i)\rangle = \bar{u}(p_f) \left[\gamma^{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}}{2m}F_2(q^2)q^{\nu}\right]u(p_i)$$

Sachs electric and magnetic form factors

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_p^2}F_2(q^2) \qquad G_M(q^2) = F_1(q^2) + F_2(q^2)$$
$$G_E^p(0) = 1 \qquad \qquad G_M^p(0) = \mu_p \approx 2.793$$

• The slope of  $G_E^p$ 

$$\langle r^2 \rangle_E^p = 6 \frac{dG_E^p}{dq^2} \bigg|_{q^2 = 0}$$

determines the charge radius  $r_E^p \equiv \sqrt{\langle r^2 \rangle_E^p}$ 

The proton *magnetic* radius

$$\langle r^2 \rangle_M^p = \frac{6}{G_M^p(0)} \frac{dG_M^p(q^2)}{dq^2} \Big|_{q^2 = 0}$$

### Charge radius from atomic physics

$$\langle p(p_f)|\sum_{q} e_q \,\bar{q}\gamma^{\mu}q|p(p_i)\rangle = \bar{u}(p_f)\left[\gamma^{\mu}F_1^p(q^2) + \frac{i\sigma_{\mu\nu}}{2m}F_2^p(q^2)q^{\nu}\right]u(p_i)$$

• For a point particle amplitude for  $p+\ell 
ightarrow p+\ell$ 

$$\mathcal{M} \propto rac{1}{q^2} \quad \Rightarrow \quad U(r) = -rac{Zlpha}{r}$$

• Including  $q^2$  corrections from proton structure

$$\mathcal{M} \propto rac{1}{q^2} q^2 = 1 \quad \Rightarrow \quad U(r) = rac{4\pi Z \alpha}{6} \delta^3(r) (r_E^p)^2$$

• Proton structure corrections  $\left(m_r=m_\ell m_p/(m_\ell+m_p)pprox m_\ell
ight)$ 

$$\Delta E_{r_E^p} = \frac{2(Z\alpha)^4}{3n^3} m_r^3 (r_E^p)^2 \delta_{\ell 0}$$

• Muonic hydrogen can give the best measurement of  $r_E^p$ !



• Lamb shift in muonic hydrogen [Pohl et al. Nature 466, 213 (2010)]  $r_E^p = 0.84184(67)$  fm

more recently  $r_E^p = 0.84087(39)$  fm [Antognini et al. Science 339, 417 (2013)]

• CODATA value [Mohr et al. RMP 80, 633 (2008)]  $r_E^p = 0.87680(690)$  fm

more recently  $r_E^{\rho} = 0.87510(610)$  fm [Mohr et al. RMP 88, 035009 (2016)] extracted mainly from (electronic) hydrogen

- 5σ discrepancy!
- This is the proton radius puzzle

### Great outreach opportunity!

- Problem easily communicated to general audience
- Example: Detroit high school students using data



[R. Pohl et al., "The size of the proton," Nature 466, 213 (2010)]

and the approximate formula,  $f = 50.59 \text{ THz} - r^2 \frac{\text{THz}}{\text{fm}^2}$  to determine r = 0.84 fm

• What could the reason for the discrepancy?

- What could the reason for the discrepancy?
- 1) Problem with the electronic extraction? (Part 1 of this talk)

- What could the reason for the discrepancy?
- 1) Problem with the electronic extraction? (Part 1 of this talk)
- 2) Misunderstood proton structure effects? (Part 2 of this talk)

- What could the reason for the discrepancy?
- 1) Problem with the electronic extraction? (Part 1 of this talk)
- 2) Misunderstood proton structure effects? (Part 2 of this talk)
- 3) New Physics?

## Outline

- Introduction: The proton radius puzzle
- Part 1: Proton radii from scattering
- Part 2: Hadronic Uncertainty?
- Conclusions and outlook

# Part 1: Proton radii from scattering

### Problem with the electronic extraction?

- You can get the proton radius from electron-proton scattering
- Recent development: use of the z expansion based on known analytic properties of form factors [Hill, GP PRD 82 113005 (2010)]
- The method for meson form factors [Flavor Lattice Averaging Group, EPJ C 74, 2890 (2014)]
- Now applied successfully to baryon form factors to extract r<sup>p</sup><sub>E</sub>, r<sup>p</sup><sub>M</sub>, r<sup>n</sup><sub>M</sub>, m<sub>A</sub>...

### Form Factors: What we do know

- Analytic properties of  $G_E^p(t)$  and  $G_M^p(t)$  are known
- They are analytic outside a cut  $t\in [4m_\pi^2,\infty]$

[Federbush, Goldberger, Treiman, Phys. Rev. 112, 642 (1958)]

• e - p scattering data is in t < 0 region



If your form factor doesn't have this analytic structure it's wrong!
 (e.g. singularity at 4m<sup>2</sup><sub>π</sub>: why should the Taylor series converge?)

• z expansion:

We can map the domain of analyticity onto the unit circle

$$z(t, t_{ ext{cut}}, t_0) = rac{\sqrt{t_{ ext{cut}} - t} - \sqrt{t_{ ext{cut}} - t_0}}{\sqrt{t_{ ext{cut}} - t} + \sqrt{t_{ ext{cut}} - t_0}}$$

where  $t_{\mathrm{cut}}=4m_{\pi}^2$ ,  $z(t_0,t_{\mathrm{cut}},t_0)=0$ 



• Expand  $G_{E,M}^p$  in a Taylor series in z:  $G_{E,M}^p(q^2) = \sum_{k=0}^{\infty} a_k \, z(q^2)^k$ 

• [Zachary Epstein, GP, Joydeep Roy PRD 90, 074027 (2014)]

• [Zachary Epstein, GP, Joydeep Roy PRD **90**, 074027 (2014)]  $G_M(Q^2)$  for proton (blue, above axis) and neutron (red, below axis)



• [Zachary Epstein, GP, Joydeep Roy PRD **90**, 074027 (2014)]  $G_M(Q^2)$  for proton (blue, above axis) and neutron (red, below axis)



 $G_M(z)$  for proton (blue, above axis) and neutron (red, below axis)



• See also R.J. Hill talk at FPCP 2006 [hep-ph/0606023]

## PDG 2016: *r*<sup>*p*</sup><sub>*E*</sub>

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

#### p CHARGE RADIUS

This is the rms electric charge radius,  $\sqrt{\langle r_E^2 \rangle}$ .

| VALUE (fm)                                                  | DOCUMENT ID      |         | TECN       | COMMENT                           |
|-------------------------------------------------------------|------------------|---------|------------|-----------------------------------|
| 0.8751 ±0.0061                                              | MOHR             | 16      | RVUE       | 2014 CODATA value                 |
| $0.84087 \pm 0.00026 \pm 0.00029$                           | ANTOGNINI        | 13      | LASR       | $\mu p$ -atom Lamb shift          |
| • • • We do not use the followin                            | g data for avera | ges, fi | ts, limits | , etc. • • •                      |
| $0.895 \pm 0.014 \pm 0.014$                                 | <sup>1</sup> LEE | 15      | SPEC       | Just 2010 Mainz data              |
| 0.916 ±0.024                                                | LEE              | 15      | SPEC       | World data, no Mainz              |
| 0.8775 ±0.0051                                              | MOHR             | 12      | RVUE       | 2010 CODATA, ep data              |
| $0.875 \pm 0.008 \pm 0.006$                                 | ZHAN             | 11      | SPEC       | Recoil polarimetry                |
| $0.879 \pm 0.005 \pm 0.006$                                 | BERNAUER         | 10      | SPEC       | $e p \rightarrow e p$ form factor |
| 0.912 ±0.009 ±0.007                                         | BORISYUK         | 10      |            | reanalyzes old ep data            |
| $0.871 \pm 0.009 \pm 0.003$                                 | HILL             | 10      |            | z-expansion reanalysis            |
| $0.84184 \!\pm\! 0.00036 \!\pm\! 0.00056$                   | POHL             | 10      | LASR       | See ANTOGNINI 13                  |
| 0.8768 ±0.0069                                              | MOHR             | 08      | RVUE       | 2006 CODATA value                 |
| $0.844 \begin{array}{c} + \ 0.008 \\ - \ 0.004 \end{array}$ | BELUSHKIN        | 07      |            | Dispersion analysis               |
| 0.897 ±0.018                                                | BLUNDEN          | 05      |            | SICK 03 + 2 $\gamma$ correction   |
| $0.8750 \pm 0.0068$                                         | MOHR             | 05      | RVUE       | 2002 CODATA value                 |
| $0.895 \pm 0.010 \pm 0.013$                                 | SICK             | 03      |            | $e p \rightarrow e p$ reanalysis  |

### [Hill, GP PRD **82** 113005 (2010)] [Lee, Arrington, Hill, PRD **92**, 013013 (2015)]

Gil Paz (Wayne State University)

The Proton Radius Puzzle

## PDG 2016: *r*<sup>p</sup><sub>M</sub>

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

#### p MAGNETIC RADIUS

This is the rms magnetic radius,  $\sqrt{\langle r_M^2 \rangle}$ .

| VALUE (fm)                                                                  | DOCUMENT ID      |    | TECN | COMMENT                                   |
|-----------------------------------------------------------------------------|------------------|----|------|-------------------------------------------|
| 0.776±0.034±0.017                                                           | <sup>1</sup> LEE | 15 | SPEC | Just 2010 Mainz data                      |
| ● ● ● We do not use the following data for averages, fits, limits, etc. ● ● |                  |    |      |                                           |
| $0.914 \pm 0.035$                                                           | LEE              | 15 | SPEC | World data, no Mainz                      |
| $0.87 \pm 0.02$                                                             | EPSTEIN          | 14 |      | Using ep, en, $\pi\pi$ data               |
| $0.867 \pm 0.009 \pm 0.018$                                                 | ZHAN             | 11 | SPEC | Recoil polarimetry                        |
| $0.777 \pm 0.013 \pm 0.010$                                                 | BERNAUER         | 10 | SPEC | $e p \rightarrow e p$ form factor         |
| $0.876 \!\pm\! 0.010 \!\pm\! 0.016$                                         | BORISYUK         | 10 |      | Reanalyzes old $e p \rightarrow e p$ data |
| $0.854 \pm 0.005$                                                           | BELUSHKIN        | 07 |      | Dispersion analysis                       |

<sup>1</sup>Authors also provide values for a combination of all available data.

[Epstein, GP, Roy PRD **90**, 074027 (2014)] [Lee, Arrington, Hill, PRD **92**, 013013 (2015)]

## PDG 2016: r<sub>M</sub><sup>n</sup>

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

# *n* MAGNETIC RADIUS

| This is the rms magneti               | c radius, $\sqrt{\langle r_M^2 \rangle}$ . |    |                             |  |
|---------------------------------------|--------------------------------------------|----|-----------------------------|--|
| VALUE (fm)                            | DOCUMENT ID                                |    | COMMENT                     |  |
| 0.864 <sup>+0.009</sup> OUR AVERAGE   |                                            |    |                             |  |
| 0.89 ±0.03                            | EPSTEIN                                    | 14 | Using ep, en, $\pi\pi$ data |  |
| $0.862 \substack{+ 0.009 \\ - 0.008}$ | BELUSHKIN                                  | 07 | Dispersion analysis         |  |

### [Epstein, GP, Roy PRD 90, 074027 (2014)]

# Part 2: Hadronic Uncertainty?

[Hill, GP PRD 95, 094017 (2017), arXiv:1611.09917]

### The bottom line

- Scattering:
- World e p data [Lee, Arrington, Hill '15]  $r_E^p = 0.918 \pm 0.024$  fm
- Mainz e p data [Lee, Arrington, Hill '15]  $r_E^p = 0.895 \pm 0.020$  fm
- Proton, neutron and  $\pi$  data [Hill , GP '10]  $r_E^p = 0.871 \pm 0.009 \pm 0.002 \pm 0.002$  fm
- Muonic hydrogen
- [Pohl et al. Nature **466**, 213 (2010)]
  - $r_E^p = 0.84184(67) \text{ fm}$
- [Antognini et al. Science **339**, 417 (2013)]  $r_E^p = 0.84087(39)$  fm
- The bottom line:

using z expansion scattering disfavors muonic hydrogen

• Is there a problem with muonic hydrogen theory?

### Muonic hydrogen theory

- Is there a problem with muonic hydrogen theory?
- Potentially yes! [Hill, GP PRL **107** 160402 (2011)]
- The proton radius arises from one photon probe
- Increasing precision requires also a two photon probe a much more complicated object

## Muonic hydrogen theory

- Is there a problem with muonic hydrogen theory?
- Potentially yes! [Hill, GP PRL 107 160402 (2011)]
- Muonic hydrogen measures  $\Delta E$  and translates it to  $r_F^p$
- [Pohl et al. Nature **466**, 213 (2010) Supplementary information]  $\Delta E = 206.0573(45) - 5.2262(r_E^p)^2 + 0.0347(r_E^p)^3 \text{ meV}$
- [Antognini et al. Science **339**, 417 (2013), Ann. of Phy. **331**, 127]  $\Delta E = 206.0336(15) 5.2275(10)(r_E^p)^2 + 0.0332(20)$  meV
- In both cases apart from  $r_E^p$  need two-photon exchange



### Two photon exchange

• Apart from  $r_F^p$  we have two-photon exchange (TPE)



• Imaginary part of TPE related to data:

form factors, structure functions

### Two photon exchange

• Apart from  $r_F^p$  we have two-photon exchange (TPE)



- Imaginary part of TPE related to data: form factors, structure functions
- Cannot reproduce it from its imaginary part: Dispersion relation requires subtraction
- Need poorly constrained non-perturbative function  $W_1(0,Q^2)$

### Two photon exchange

• Apart from  $r_F^p$  we have two-photon exchange (TPE)



• Dispersion relations ( $\nu = 2k \cdot q$ ,  $Q^2 = -q^2$ )

$$W_1(\nu, Q^2) = W_1(0, Q^2) + rac{
u^2}{\pi} \int_{
u_{
m cut}(Q^2)^2}^{\infty} d
u'^2 rac{{
m Im} W_1(
u', Q^2)}{
u'^2(
u'^2 - 
u^2)}$$

$$W_2(\nu, Q^2) = \frac{1}{\pi} \int_{\nu_{\rm cut}(Q^2)^2}^{\infty} d\nu'^2 \frac{{\rm Im} W_2(\nu', Q^2)}{\nu'^2 - \nu^2}$$

• W<sub>1</sub> requires subtraction...

### Two Photon exchange: small $Q^2$ limit

• *Small Q*<sup>2</sup> limit using NRQED [Hill, GP, PRL **107** 160402 (2011)] The photon sees the proton "almost" like an elementary particle

$$W_{1}(0, Q^{2}) = 2a_{\rho}(2+a_{\rho}) + \frac{Q^{2}}{m_{\rho}^{2}} \left\{ \frac{2m_{\rho}^{3}\bar{\beta}}{\alpha} - a_{\rho} - \frac{2}{3} \left[ (1+a_{\rho})^{2}m_{\rho}^{2}(r_{M}^{\rho})^{2} - m_{\rho}^{2}(r_{E}^{\rho})^{2} \right] \right\} + \mathcal{O}\left(Q^{4}\right)$$
$$W_{1}(0, Q^{2}) = 13.6 + \frac{Q^{2}}{m_{\rho}^{2}}\left(-54 \pm 7\right) + \mathcal{O}\left(Q^{4}\right)$$

### Two Photon exchange: small $Q^2$ limit

• *Small Q*<sup>2</sup> limit using NRQED [Hill, GP, PRL **107** 160402 (2011)] The photon sees the proton "almost" like an elementary particle

$$\begin{split} \mathcal{W}_{1}(0,Q^{2}) &= 2a_{p}(2+a_{p}) + \frac{Q^{2}}{m_{p}^{2}} \left\{ \frac{2m_{p}^{3}\bar{\beta}}{\alpha} - a_{p} - \frac{2}{3} \left[ (1+a_{p})^{2}m_{p}^{2}(r_{M}^{p})^{2} - m_{p}^{2}(r_{E}^{p})^{2} \right] \right\} + \mathcal{O}\left(Q^{4}\right) \\ \mathcal{W}_{1}(0,Q^{2}) &= 13.6 + \frac{Q^{2}}{m_{p}^{2}}\left(-54\pm7\right) + \mathcal{O}\left(Q^{4}\right) \end{split}$$

 O (Q<sup>4</sup>) depend on unmeasured higher dim. NRQED matrix elements [Gunawardna, GP JHEP 1707 137 (2017), Kobach, Pal PLB 772 225 (2017)]

### Two Photon exchange: small $Q^2$ limit

 Small Q<sup>2</sup> limit using NRQED [Hill, GP, PRL 107 160402 (2011)] The photon sees the proton "almost" like an elementary particle

$$\begin{split} \mathcal{W}_{1}(0,Q^{2}) &= 2a_{p}(2+a_{p}) + \frac{Q^{2}}{m_{p}^{2}} \left\{ \frac{2m_{p}^{3}\bar{\beta}}{\alpha} - a_{p} - \frac{2}{3} \left[ (1+a_{p})^{2}m_{p}^{2}(r_{M}^{p})^{2} - m_{p}^{2}(r_{E}^{p})^{2} \right] \right\} + \mathcal{O}\left(Q^{4}\right) \\ \mathcal{W}_{1}(0,Q^{2}) &= 13.6 + \frac{Q^{2}}{m_{p}^{2}}\left(-54\pm7\right) + \mathcal{O}\left(Q^{4}\right) \end{split}$$

 O (Q<sup>4</sup>) depend on unmeasured higher dim. NRQED matrix elements [Gunawardna, GP JHEP 1707 137 (2017), Kobach, Pal PLB 772 225 (2017)]



• Large  $Q^2$  limit using Operator Product Expansion (OPE) The photon "sees" the quarks and gluons inside the proton

$$W_1(0,Q^2)=c/Q^2+\mathcal{O}\left(1/Q^4
ight)$$

• Large  $Q^2$  limit using Operator Product Expansion (OPE) The photon "sees" the quarks and gluons inside the proton

$$W_1(0,Q^2) = c/Q^2 + \mathcal{O}(1/Q^4)$$

• c calculated in [J. C. Collins, NPB 149, 90 (1979)]

#### RENORMALIZATION OF THE COTTINGHAM FORMULA

John C. COLLINS \* Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

• Large  $Q^2$  limit using Operator Product Expansion (OPE) The photon "sees" the quarks and gluons inside the proton

$$W_1(0,Q^2) = c/Q^2 + \mathcal{O}(1/Q^4)$$

• c calculated in [J. C. Collins, NPB 149, 90 (1979)]

#### RENORMALIZATION OF THE COTTINGHAM FORMULA

John C. COLLINS \* Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

Was it?

• Large  $Q^2$  limit using Operator Product Expansion (OPE) The photon "sees" the quarks and gluons inside the proton

$$W_1(0,Q^2)=c/Q^2+\mathcal{O}\left(1/Q^4
ight)$$

• c calculated in [J. C. Collins, NPB 149, 90 (1979)]

#### RENORMALIZATION OF THE COTTINGHAM FORMULA

John C. COLLINS \* Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

 Was it? No! Collins calculated only spin-0 operators Need also spin-2 operators [Hill, GP PRD 95, 094017 (2017)]

• Large  $Q^2$  limit using Operator Product Expansion (OPE) The photon "sees" the quarks and gluons inside the proton

$$W_1(0,Q^2)=c/Q^2+\mathcal{O}\left(1/Q^4
ight)$$

• c calculated in [J. C. Collins, NPB 149, 90 (1979)]

#### RENORMALIZATION OF THE COTTINGHAM FORMULA

John C. COLLINS \* Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

- Was it? No! Collins calculated only spin-0 operators Need also spin-2 operators [Hill, GP PRD 95, 094017 (2017)]
- Even worse, we found a numerical mistake in his calculation... As a result, the spin-0 contribution is almost negligible, see [Hill, GP PRD **95**, 094017 (2017)]

#### Two Photon Exchange: large $Q^2$ limit

• Large  $Q^2$  limit using Operator Product Expansion (OPE) The photon "sees" the quarks and gluons inside the proton

$$W_1(0,Q^2)=c/Q^2+\mathcal{O}\left(1/Q^4
ight)$$

• c calculated in [J. C. Collins, NPB 149, 90 (1979)]

#### RENORMALIZATION OF THE COTTINGHAM FORMULA

John C. COLLINS \* Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Received 23 October 1978

- Was it? No! Collins calculated only spin-0 operators Need also spin-2 operators [Hill, GP PRD 95, 094017 (2017)]
- Even worse, we found a numerical mistake in his calculation... As a result, the spin-0 contribution is almost negligible, see [Hill, GP PRD **95**, 094017 (2017)]
- Collins confirmed the mistake in [J. C. Collins, NPB 915, 392 (2017)]

# Large $Q^2$ behavior



- Performing the complete calculation, we found a mistake in Collins spin-0 calculation from 1978...
- Collins didn't calculate the spin-0 gluon contribution directly He extracted it from another calculation
- For three light quark u, d, sCorrect result:  $\sum_{q} e_q^2 = (\frac{2}{3})^2 + (\frac{1}{3})^2 + (\frac{1}{3})^2 = \frac{2}{3}$ Collins:  $\sum_{q} = 3$ Too large by a factor of 4.5...

- Simple modeling: use OPE for  $Q^2 \ge 1 \text{ GeV}^2$
- Model unknown  $Q^4$ : add  $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$  with  $\Lambda_Lpprox$  500 MeV
- Model unknown  $1/Q^4$ : add  $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$  with  $\Lambda_H \approx 500$  MeV

- Simple modeling: use OPE for  $Q^2 \ge 1 \ {
  m GeV}^2$
- Model unknown  $Q^4$ : add  $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$  with  $\Lambda_Lpprox$  500 MeV
- Model unknown  $1/Q^4$ : add  $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$  with  $\Lambda_H \approx 500$  MeV
- How to connect the curves?



- Simple modeling: use OPE for  $Q^2 \ge 1 \ {
  m GeV}^2$
- Model unknown  $Q^4$ : add  $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$  with  $\Lambda_Lpprox$  500 MeV
- Model unknown  $1/Q^4$ : add  $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$  with  $\Lambda_H \approx 500$  MeV
- Interpolating:

- $\bullet$  Simple modeling: use OPE for  $Q^2 \geq 1 \ {\rm GeV}^2$
- Model unknown  $Q^4$ : add  $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$  with  $\Lambda_Lpprox$  500 MeV
- Model unknown  $1/Q^4$ : add  $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$  with  $\Lambda_H \approx 500$  MeV
- Interpolating:



- $\bullet$  Simple modeling: use OPE for  ${\it Q}^2 \geq 1 {\rm ~GeV}^2$
- Model unknown  $Q^4$ : add  $\Delta_L(Q^2)=\pm Q^2/\Lambda_L^2$  with  $\Lambda_Lpprox$  500 MeV
- Model unknown  $1/Q^4$ : add  $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$  with  $\Lambda_H \approx 500$  MeV
- Interpolating:



- Energy contribution:  $\delta E(2S)^{W_1(0,Q^2)} \in [-0.046 \text{ meV}, -0.021 \text{ meV}]$ To explain the puzzle need this to be  $\sim -0.3 \text{ meV}$
- Caveats: OPE might be only valid for larger  $Q^2$  $W_1(0, Q^2)$  might be different than the interpolated lines

#### Two Photon Exchange: Other approaches

• Similar results found by other groups



- [34] K. Pachucki, PRA 60, 3593 (1999).
- [35] A. P. Martynenko, Phys. At. Nucl. 69, 1309 (2006).
- [36] D. Nevado and A. Pineda, PRC 77, 035202 (2008).
- [33] C. E. Carlson and M. Vanderhaeghen, PRA 84, 020102 (2011).
- [3] M. C. Birse and J. A. McGovern, EPJA 48, 120 (2012).
- [37] Gorchtein, Llanes-Estrada, Szczepaniak, PRA 87, 052501 (2013).
- [38] J. M. Alarcon, V. Lensky, and V. Pascalutsa, EPJC 74, 2852 (2014).
- [5] C. Peset and A. Pineda, Nucl. Phys. B887, 69 (2014).
- [4] Antognini, Kottmann, Biraben, Indelicato, Nez, Pohl, Ann. Phys. 331, 127 (2013).
- [Fig. 8] Hill, GP PRD 95, 094017 (2017).

#### Experimental test

 How to test? New experiment: μ – p scattering MUSE (MUon proton Scattering Experiment) at PSI [R. Gilman et al. (MUSE Collaboration), arXiv:1303.2160]



Need to connect muon-proton scattering and muonic hydrogen can use a new effective field theory: QED-NRQED
 [Hill, Lee, GP, Mikhail P. Solon, PRD 87 053017 (2013)]
 [Steven P. Dye, Matthew Gonderinger, GP, PRD 94 013006 (2016)]
 [Steven P. Dye, Matthew Gonderinger, GP, in progress]

- Proton radius puzzle:  $>5\sigma$  discrepancy between
- $r_E^p$  from muonic hydrogen
- $r_E^p$  from hydrogen and e p scattering

- Proton radius puzzle:  $>5\sigma$  discrepancy between
- $r_E^p$  from muonic hydrogen
- $r_E^p$  from hydrogen and e p scattering
- Scattering data using z expansion disfavors muonic hydrogen

- Proton radius puzzle:  $> 5\sigma$  discrepancy between
- $r_E^p$  from muonic hydrogen
- $r_E^p$  from hydrogen and e p scattering
- Scattering data using z expansion disfavors muonic hydrogen
- Recent muonic deuterium results find similar discrepancies [Pohl et al. Science **353**, 669 (2016)]

- Proton radius puzzle:  $>5\sigma$  discrepancy between
- $r_E^p$  from muonic hydrogen
- $r_E^p$  from hydrogen and e p scattering
- Scattering data using z expansion disfavors muonic hydrogen
- Recent muonic deuterium results find similar discrepancies [Pohl et al. Science **353**, 669 (2016)]
- New hydrogen measurement agrees with muonic hydrogen...
   [Beyer,...Pohl,...,Udem et al. Science 358, 79 (2017)]
   Pohl: "This measurement does not resolve the proton radius puzzle"

- Proton radius puzzle:  $>5\sigma$  discrepancy between
- $r_E^p$  from muonic hydrogen
- $r_E^p$  from hydrogen and e p scattering
- Scattering data using z expansion disfavors muonic hydrogen
- Recent muonic deuterium results find similar discrepancies [Pohl et al. Science **353**, 669 (2016)]
- New hydrogen measurement agrees with muonic hydrogen...
   [Beyer,...Pohl,...,Udem et al. Science 358, 79 (2017)]
   Pohl: "This measurement does not resolve the proton radius puzzle"
- After 7 years the origin is still not clear
- 1) Is it a problem with the electronic extraction?
- 2) Is it a hadronic uncertainty?
- 3) is it new physics?

- Proton radius puzzle:  $> 5\sigma$  discrepancy between
- $r_E^p$  from muonic hydrogen
- $r_E^p$  from hydrogen and e p scattering
- Scattering data using z expansion disfavors muonic hydrogen
- Recent muonic deuterium results find similar discrepancies [Pohl et al. Science **353**, 669 (2016)]
- New hydrogen measurement agrees with muonic hydrogen...
   [Beyer,...Pohl,...,Udem et al. Science 358, 79 (2017)]
   Pohl: "This measurement does not resolve the proton radius puzzle"
- After 7 years the origin is still not clear
- 1) Is it a problem with the electronic extraction?
- 2) Is it a hadronic uncertainty?
- 3) is it new physics?
  - Motivates a reevaluation of our understanding of the proton

• Discussed three topics:

- Discussed three topics:
- Extraction of proton radii from scattering: Use an established tool of the *z* expansion Studies disfavor the muonic hydrogen value

- Discussed three topics:
- Extraction of proton radii from scattering: Use an established tool of the z expansion Studies disfavor the muonic hydrogen value
- 2) The first *full* and *correct* evaluation of large  $Q^2$  behavior of forward virtual Compton tensor Can improve the modeling of two photon exchange effects

- Discussed three topics:
- Extraction of proton radii from scattering: Use an established tool of the z expansion Studies disfavor the muonic hydrogen value
- 2) The first *full* and *correct* evaluation of large  $Q^2$  behavior of forward virtual Compton tensor Can improve the modeling of two photon exchange effects
- 3) Direct connection between muon-proton scattering and muonic hydrogen using a new effective field theory: QED-NRQED

- Discussed three topics:
- Extraction of proton radii from scattering: Use an established tool of the z expansion Studies disfavor the muonic hydrogen value
- 2) The first *full* and *correct* evaluation of large  $Q^2$  behavior of forward virtual Compton tensor Can improve the modeling of two photon exchange effects
- 3) Direct connection between muon-proton scattering and muonic hydrogen using a new effective field theory: QED-NRQED
  - Much more work to do!
  - Thank you