Proximity-induced *p*-wave superconductivity in hybrid systems comprising chiral molecules and graphene

Oded Millo

Racah Institute of Physics, The Hebrew University of Jerusalem, Israel

Following our previous scanning tunneling spectroscopy (STS) investigations of spinpolarized proximity effects in superconductor/ferromagnet bilayers [1,2] (which will be briefly reviewed in my talk), we employed the same technique in the study of two types of hybrid superconducting systems, which also showed evidence for emerging spin-polarized triplet-pairing superconductivity. The first comprises chiral molecules (polyalanine alpha-helix) deposited on Nb (a conventional s-wave, singlet-pairing superconductor). Surprisingly, the tunnelling spectra measured in molecule-covered regions exhibited zero-bias conductance peaks (ZBCPs), indicating induced orderparameter with non-conventional symmetry in the Nb, conforming to triplet-pairing pwave. The possible origin of this spin-polarized inverse proximity effect will be discussed. A similar phenomenon was found for a proximal superconductor, where the conventional proximity-induced s-wave in Au coupled to NbN turned unconventional upon the deposition of chiral molecules. In the second part of the lecture, I will present STS measurements on graphene deposited on the electron-doped cuprate superconductor Pr_{1.85}CeCuO₄ (PCCO). Here too, the proximity induced order parameter in the graphene sheet appears to have non-conventional symmetry, as reflected by ZBCPs and split-ZBCPs in the tunneling spectra. We note that ZBCPs are not observed on the bare PCCO, despite being a d-wave superconductor. The tunneling spectra are well accounted for by a model predicting p-wave triggered superconducting density of states in single layer graphene proximity-coupled to a dwave superconductor.

^[1] Y. Kalcheim, et al., Phys. Rev B (Rapid Comm.), 89, 180506 (2014).

^[2] Y. Kalcheim, et al., Phys. Rev. B (Rapid Comm.), 92, 060501 (2015).