Probing quantum plasmonics and the ultimate limits of light compression with Van der Waals heterostructures

Frank Koppens

The Institute of Photonics Science (ICFO) The Barcelona Institute of Science and Technology ICREA

Van der Waals materials have emerged as a toolbox for in-situ control of a wide range of collective excitations coupled to light: polaritons². In this talk, we will show several examples of near-field microscopy for exciting, controlling and detecting polaritons^{3,4}. Plasmon modes propagating almost as slow as the electron Fermi velocity show a strong quantum non-local response, which can be further exploited to study many-body effects.

We further show that a graphene-insulator-metal heterostructure can overcome the tradeoff of optical confinement and loss, and we demonstrate plasmon confinement down to the ultimate limit of the lengthscale of one atom¹. Record strong normalized mode volume confinement of the range 10⁹ - 10¹⁰ was achieved by far-field excitation of plasmon modes squeezed into an atomically thin h-BN spacer between graphene and metal rods. These ultra-confined plasmonic modes, addressed with far-field light excitation, enables a route to new regimes of ultra-strong light-matter interactions.

References

- 1. Probing the Ultimate Plasmon Confinement Limits with a Van der Waals heterostructures. Alcarez et al., Science (2018)
- 2. Polaritons in layered two-dimensional materials. Low et al., Nature Materials 16 (2) pp 182 (2017)
- 3. Tuning quantum non-local effects in graphene plasmonics. Lundeberg et al., Science (2017)
- 4. Electrical 2pi phase control of infrared light in a 350-nm footprint using graphene plasmons. A. Woessner et al., Nature Photonics 11, 421-424 (2017)

