Course Identification
Advanced Topics in Computer Vision and Deep Learning
Lecturers and Teaching Assistants
Prof. Ronen Basri, Prof. Michal Irani, Prof. Shimon Ullman, Dr. Shai Bagon
Course Schedule and Location
Second Semester
Sunday, 14:15 - 16:00, Ziskind, Rm 1
24/03/2019
Field of Study, Course Type and Credit Points
Mathematics and Computer Science: Seminar; Elective; 2.00 points
Life Sciences (Molecular and Cellular Neuroscience Track): Lecture; Elective; 2.00 points
Life Sciences (Brain Sciences: Systems, Computational and Cognitive Neuroscience Track): Lecture; Elective; 2.00 points
Mathematics and Computer Science (Systems Biology / Bioinformatics): Lecture; Elective; 2.00 points
Comments
Advanced Reading-Group Seminar.
Absence from lessons must be for a justified reason, and with prior approval.
Priority will be given to students from the Math and CS faculty.
Prerequisites
Background in Computer Vision or Machine-Learning (at least a basic course in those areas).
Attendance and participation
Grade Breakdown (in %)
The grade is based on a presentation, attendance, and reading papers
Estimated Weekly Independent Workload (in hours)
Syllabus
This course will cover important advances and recently published papers in Computer Vision and Deep Learning.
Learning Outcomes
Upon successful completion of this course students should be able to:
Become familiar with advances and recently published papers in the area of Deep Learning and applications to Computer Vision. In addition, an emphasis will be put on how to prepare a good presentation.
Reading List
List of papers to read will be given at the beginning of the course.