Course Identification

Physics module: Mathematics of physics
20196181

Lecturers and Teaching Assistants

Prof. Shimon Levit
Dr. Dan Klein

Course Schedule and Location

2019
First Semester
Tuesday, 10:00 - 12:00, Weissman, Seminar Rm B
13/09/2018
42

Field of Study, Course Type and Credit Points

Science Teaching (non thesis MSc Track): Lecture; Obligatory; 3.00 points

Comments

For first year students
הקורס יחל לפני תחילת שנת הלימודים האקדמית כמכינה לקורס בתאריכים:
ספטמבר:
ימי שלישי: 4
ימי חמישי: 6,13,20

אוקטובר:
ימי שלישי: 9,16,23
ימי חמישי: 4,11,18,25

משעה 9:00 עד 13:00 הרצאות ומ 14:00 ל-16:00 תרגול.

חדר סמינרים B בבניין וייסמן

Prerequisites

No

Restrictions

No

Language of Instruction

Hebrew

Attendance and participation

Obligatory

Grade Type

Numerical (out of 100)

Grade Breakdown (in %)

100%

Evaluation Type

Examination

Scheduled date 1

N/A
N/A
-
N/A

Scheduled date 2

N/A
N/A
-
N/A

Estimated Weekly Independent Workload (in hours)

N/A

Syllabus

  1. Hyperbolic Functions. Taylor Series. Gaussian Integrals. The Dirac Delta Function. Spherical and Cylindrical Coordinates
  2. Complex Numbers and Complex Functions. Definition of a Complex Number. Basic Complex Arithmetics. The Complex Plane. Complex Exponentials and General Complex Functions.
  3. Vectors and Vector Analysis. Vectors and Their Transformations. Transformation Matrices. Addition and Multiplication of Vectors. Why Physics Uses Vectors? Rotational Invariance. Tensors. Integrals of Vectors. Derivatives of Vectors. The Gradient. The Laplacian. Divergence and Curl. Useful Identities and Calculation Tips.
  4. Systems of Linear Algebraic Equations. Matrices and Determinants. Two Linear Equations. Conditions on Determinants for Solution to Exist. Eigenvalues and Eigenvectors. Product of 2 £ 2 Matrices. Functions of 2 £ 2 Matrices. System of n Equations and its Matrix Form. Determinant of an n£n Matrix. Cramer's Formula and Existence of Solutions. Eigenvalues and Eigenvectors of n£n Matrices. Product of n £ n Matrices.
  5. Ordinary Differential Equations (ODE). Linear ODE with Constant Coefficients. Linear Second Order ODE with Non Constant Coefficients. Systems of Linear ODE's. Coupled Oscillators.

Learning Outcomes

Upon successful completion of the course students will be able to:

Demonstrate enough proficiency in the topics taught in the course to enable them cope with the demanding curriculum of the physics courses in the program.

Reading List

Lecture Notes

Website

N/A