[ABD+24] Taylor Applebaum, Sam Blackwell, Alex Davies, Thomas Edlich, András Juhász, Marc Lackenby, Nenad Tomasev, and Daniel Zheng. The unknotting number, hard unknot diagrams, and reinforcement learning. arXiv, 2409.09032, 2024.
[ACH24] Alberto Alfarano, François Charton, and Amaury Hayat. Global lyapunov functions: a long-standing open problem in mathematics, with symbolic transformers. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages 93643–93670. Curran Associates, Inc., 2024.
[CEWW24] François Charton, Jordan S. Ellenberg, Adam Zsolt Wagner, and Geordie Williamson. Patternboost: Constructions in mathematics with a little help from AI. arXiv, 2411.00566, 2024.
[CKV23] Tom Coates, Alexander M. Kasprzyk, and Sara Veneziale. Machine learning the dimension of a fano variety. Nature Communications, 14(1), 2023.
[DVB+21] Alex Davies, Petar Velickovic, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomasev, Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, et al. Advancing mathematics by guiding human intuition with AI. Nature, 600(7887):70–74, 2021.
[FBH+22] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J R. Ruiz, Julian Schrittwieser, Grzegorz Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature,
610(7930):47–53, 2022.
[Gri24] Elisenda Grigsby. Graduate topics on deep learning theory. https://www.youtube.com/playlist?list=
PL0NRmB0fnLJSEXFQHGF0q5JcedxTqK4AJ, 2024. Video lectures from course at CMSA, Harvard.
[KM25] Manuel Kauers and Jakob Moosbauer. Some new non-commutative matrix multiplication algorithms of size (n, m, 6). ACM Commun. Comput. Algebra, 58(1):1–11, January 2025.
[LLPS93] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 6(6):861–867, 1993.
[LWV+25] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic, Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov–Arnold networks. In The Thirteenth International Conference on Learning Representations, 2025.
[MCA23] Mathematical challenges in AI seminar. https://sites.google.com/view/m-ml-sydney/home, 2023. Organized by Harini Desiraju, Georg Gottwald and Geordie Williamson. Sydney Mathematical Research Institute.
[MLW22] Machine learning for the working mathematician seminar. https://sites.google.com/view/mlwm-seminar-2022, 2022. Organized by Joel Gibson, Georg Gottwald, and Geordie Williamson. Sydney Mathematical Research Institute.
[RGM+21] Gal Raayoni, Shahar Gottlieb, Yahel Manor, George Pisha, Yoav Harris, Uri Mendlovic, Doron Haviv, Yaron Hadad, and Ido Kaminer. Generating conjectures on fundamental constants with the Ramanujan machine. Nature, 590(7844):67–73, 2021.
[RPBN+24] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang, Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries from program search with large language models. Nature, 625(7995):468 – 475, 2024.
[Sha53] L. S. Shapley. 17. A Value for n-Person Games, pages 307–318. Princeton University Press, Princeton, 1953.
[SB+98] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT press Cambridge, 1998.
[SWW+25] Grzegorz Swirszcz, Adam Zsolt Wagner, Geordie Williamson, Sam Blackwell, Bogdan Georgiev, Alex Davies, Ali Eslami, Sebastien Racaniere, Theophane Weber, and Pushmeet Kohli.
Advancing geometry with AI: Multi-agent generation of polytopes. arXiv, 2502.05199, 2025.
[Wag21] Adam Zsolt Wagner. Constructions in combinatorics via neural networks. arXiv, 2104.14516, 2021.