Course Identification

Recent development in studies of White Dwarf populations
20241282

Lecturers and Teaching Assistants

Dr. Sagi Ben-Ami
N/A

Course Schedule and Location

2024
Second Semester
Sunday, 15:15 - 16:00, Benozio Center for Astrophysics
07/04/2024
07/07/2024

Field of Study, Course Type and Credit Points

Physical Sciences: 1.00 points

Comments

Reading Course

Prerequisites

No

Restrictions

10

Language of Instruction

English

Attendance and participation

Required in at least 80% of the lectures

Grade Type

Pass / Fail

Grade Breakdown (in %)

50%
50%

Evaluation Type

Other

Scheduled date 1

N/A
N/A
-
N/A

Estimated Weekly Independent Workload (in hours)

2

Syllabus

We will review recent developments in the study of White Dwarfs, with a focus on results from the latest ky surveys. Each participant will need to review and present 2-3 journal papers from the list below.

Learning Outcomes

The participants will acquire knowledge of recent develop in the study of White Dwarfs, their properties and their evolution.

Reading List

The GAIA Whire Dwarf Revolution: https://arxiv.org/html/2402.14960v1

B´edard, A., Bergeron, P., Fontaine, G., 2017. Measurements of Physical  Parameters of White Dwarfs: A Test of the Mass-Radius Relation. ApJ  848, 11. doi:10.3847/1538-4357/aa8bb6, arXiv:1709.02324.

Saumon, D., Blouin, S., Tremblay, P.E., 2022. Current challenges in the  physics of white dwarf stars. Physics Reports 988, 1–63. doi:10.1016/j.  physrep.2022.09.001, arXiv:2209.02846.

Caiazzo, I. et al., 2023. A rotating white dwarf shows different com-  positions on its opposite faces. Nature 620, 61–66. doi:10.1038/  s41586-023-06171-9, arXiv:2308.07430.

Burdge, K. B. et al., 2022. A dense 0.1-solar-mass star in a 51-minute-  orbital-period eclipsing binary. Nature 610, 467–471. doi:10.1038/  s41586-022-05195-x, arXiv:2210.01809.

Elms, A.K., Tremblay, P.E., G¨ansicke, B.T., Koester, D., Hollands, M.A.,  Gentile Fusillo, N.P., Cunningham, T., Apps, K., 2022. Spectral analysis  of ultra-cool white dwarfs polluted by planetary debris. MNRAS 517,  4557–4574. doi:10.1093/mnras/stac2908, arXiv:2206.05258.

Kilic, M., Bergeron, P., Kosakowski, A., Brown, W.R., Ag¨ueros, M.A.,  Blouin, S., 2020b. The 100 pc White Dwarf Sample in the SDSS Foot-  print. ApJ 898, 84. doi:10.3847/1538-4357/ab9b8d, arXiv:2006.00323.

Tremblay, P.-E. et al., 2019b. Core crystallization and pile-up in the cooling  sequence of evolving white dwarfs. Nature 565, 202–205. doi:10.1038/  s41586-018-0791-x, arXiv:1908.00370.

Kilic, M., Bergeron, P., Dame, K., Hambly, N.C., Rowell, N., Crawford,  C.L., 2019. The age of the Galactic stellar halo from Gaia white dwarfs.  MNRAS 482, 965–979. doi:10.1093/mnras/sty2755, arXiv:1810.03536.

Shen, K.J., Blouin, S., Breivik, K., 2023. The Q Branch Cooling Anomaly  Can Be Explained by Mergers of White Dwarfs and Subgiant Stars. ApJl  955, L33. doi:10.3847/2041-8213/acf57b, arXiv:2308.04559.

Website

N/A